• Title/Summary/Keyword: End-Plate

Search Result 646, Processing Time 0.037 seconds

A Study on the Buckling Strength and Effective Length of Tubular Member with Gusset Plate Considering End Restraints (단부구속효과를 고려한 관통 가셋트 부착 강관부재의 좌굴내력 및 유효세장비 산정에 관한 연구)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 2003
  • A tubular member with through-gusset plate is often used to transmit axial compression in an electric transmission towers. In current code, the strength of tubular member is evaluated with an effective length factor k=0.9 without considering the deformation of boundary element. A buckling strength of member with end gusset plate is affected by stiffness ratio($\beta$) and the length ratio(G) between main tubular member and end gusset plate. In this study theoretical mechanism based on the elastic buckling behavior was investigated, and finite element analysis was performed to propose a formula for the buckling strength and effective length factor of tubular member in elsatic and inelastic ranges.

Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Mesic, Esad
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.555-581
    • /
    • 2018
  • The moment-resistant steel frames are frequently used as a load-bearing structure of buildings. Global response of a moment-resistant frame structure strongly depends on connections behavior, which can significantly influence the response and load-bearing capacity of a steel frame structure. The analysis of a steel frame with included joints behavior is the main focus of this work. In particular, we analyze the behavior of two connection types through experimental tests, and we propose numerical beam model capable of representing connection behavior. The six experimental tests, under monotonic and cyclic loading, are performed for two different types of structural connections: end plate connection with an extended plate and end plate connection. The proposed damage-plasticity model of Reissner beam is able to capture both hardening and softening response under monotonic and cyclic loading. This model has 18 constitutive parameters, whose identification requires an elaborate procedure, which we illustrate in this work. We also present appropriate loading program and arrangement of measuring equipment, which is crucial for successful identification of constitutive parameters. Finally, throughout several practical examples, we illustrate that the steel structure connections are very important for correct prediction of the global steel frame structure response.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

A Study on Estimation of Numbers of Motor Unit related to the Widths and Distribution of Endplate in Neuromuscular Junction (신경근육 접합부의 종판 폭과 분포에 따른 운동단위 수의 추정에 관한 연구)

  • Lee, Ho-Yong;Kim, Duck-Young;Park, Jung-Ho;Jung, Chul-Ki;Kim, Sung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.81-92
    • /
    • 2011
  • In this paper, a new method to estimate the number of MU (motor unit) related to the widths and distribution of end plate in NMJ (neuromuscular junction) of biceps brachii is proposed by varying muscle parameter statistically in EMG model. This work is done by designing MU-simulator and EPZ-simulator. The proposed method was compared with the results of previous researchers. The proposed MU-simulator generates SMUAP (single motor unit action potential) and CMAP (compound muscle action potential) signal similar to detected SMUAP and CMAP signal obtained from muscle. The EPZ-simulator estimate the numbers of MU by varying the widths and distribution of end plate in neuromuscular junction of muscle. The results shows that the numbers of MU was estimated about 450 ea. and muscle fibers was about 340 ea., end plate widths was about 6 mm, and end plate was randomly distributed. The proposed method may be comparable with the method of anatomical studies.

Optimization of Automotive PEMFC Bipolar Plates considering Heat Transfer and Thermal Loads (열전달 및 열하중을 고려한 자동차 연료전지(PEMFC) 분리판의 두께 최적설계)

  • Kim, Young-Sung;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2015
  • A stack in the proton exchange membrane fuel cell (PEMFC) consists of bipolar plates, a membrane electrode assembly, a gas diffusion layer, a collector and end plates. High current density is usually obtainable partially from uniform temperature distribution in the fuel cell. A size optimization method considering the thermal expansion effect of stacked plates was developed on the basis of finite element analyses. The thermal stresses in end, bipolar, and cooling plates were calculated based on temperature distribution obtained from thermal analyses. Finally, the optimization method was applied and optimum thicknesses of the three plates were calculated considering both fastening bolt tension and thermal expansion of each unit cell (72 cells, 5kW). The optimum design considering both thermal and mechanical loads increases the thickness of an end plate by 0.64-0.83% the case considering only mechanical load. The effect can be enlarged if the number of stack increases as in an automotive application to 200-300 stacks.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Evaluation of Structural Test for Bottom End Piece Used for Nuclear Power Reactor (원자로용 하단고정체에 대한 구조시험 평가)

  • 김재훈;사정우;김덕회;손동성;임정식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.3-11
    • /
    • 1999
  • The atomic fuel rods between top and bottom end pieces of reactor need to be extended for high combustion rate of future-type fuel to increase the irradiation in the axial direction. For allowing axial extension of the fuel rods, the space between top and bottom end pieces should be expanded. Thus the thickness reduction of the flow plate is necessary. This study was carried out the mechanical strength test by using strain gages as a function of flow plate thickness, the existence of skirt and loading condition for the Korean Fuel Assembly(KOFA). The experimental apparatus was designed for load conditions, uniformly distributed load and displacement. Test method using whiffle tree of uniformly distributed load has been comparatively conservative. The test results were compared with those of finite element analysis and the test method on bottom end piece was established.

  • PDF

A Study on the FEM Analysis and Gripping Force Control of End-Effector for the Wafer Handling Robot System (Wafer 반송용 End-Effector의 FEM 해석 및 파지력 제어에 관한 연구)

  • 권오진;최성주;이우영;이강원;박원규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.31-36
    • /
    • 2003
  • On this study, an E.E(End-Effector) for the 300 mm wafer transfer robot system is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor controlled by microchip. To design, relationship between the gripping force and the wafer deformation is analyzed by FEM. By analytic results, the gripping force for 300 mm wafer is confirmed as 255~274 gf. From experimental results on gripping force, repeatable position accuracy and gripping cycle times in a wafer cleaning system, we confirmed that the suggested E.E was well designed to satisfiy on the required performance for 300 mm wafer transfer robot system.

  • PDF

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

Experimentally investigation of replaceable reduced beam section utilizing beam splice connection

  • Yasin Onuralp Ozkilic;Mehmet Bakir Bozkurt
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.109-119
    • /
    • 2024
  • This study presents a replaceable reduced beam section (R-RBS) located at the column end in moment resisting frames (MRFs). An end of the R-RBS is connected to column by using end-plate moment connection and the other end of that is connected to main beam with beam splice connection. Therefore, the RBS that is expected to yield under an earthquake can be easily replaceable. Geometry of the RBS and the thickness of the beam splice connection are the prime variables of this study. A total of eight experimental test was carried out to examine the seismic performance of the proposed R-RBS with the connection details. The results obtained from experimental studies demonstrated that plate sizes of the beam splice connection significantly affect the seismic performance of RBSs used in MRFs.