• Title/Summary/Keyword: End-Plate

Search Result 646, Processing Time 0.026 seconds

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

Deformation Capacity of Endplate-type Beam-to-Column Connection with New Type Mechanical Fasteners (신형상 메카니컬패스너를 사용한 엔드플레이트 형식 보-기둥 접합부의 변형성능)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.123-130
    • /
    • 2006
  • This study propose cutting body portion-high strength mechanical fasteners to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connections. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

Experimental and Application Examples of Composite Beams Strengthened by Lower End Compression Member and Upper Tension Reinforcement (단부 하부 압축재와 상부 인장 철근으로 보강한 합성보의 실험 및 적용 사례 연구)

  • Oh, Jung-Keun;Shim, Nam-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2019
  • The BX composite beam is designed to have the same cross-section regardless of the size of the momentum, which is a disadvantage of the existing steel structure. Combination of the H-beam end compressive material and the H-section steel tensile reinforcement according to the moment size in a single span, It is possible to say that it is an excellent synthesis which increases the performance. When underground and overhead structures are constructed, it is possible to reduce the bending, increase lateral stiffness, reduce construction cost, and simplify joints. The seamability of the joining part is a simple steel composite beam because of the decrease of the beam damping at the center of the beam and the use of the end plate of the new end compressing material. In the case of structures with long span structure and high load, it is advantageous to reduce the material cost by designing large steel which is high in price at less than medium steel.

A Study to Improve Bonding Strength with Notch in Strengthening Plate (노치를 이용한 보강재의 부착력 증가 방안에 관한 연구)

  • 한만엽;송병표
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.647-652
    • /
    • 1998
  • Recently, many strengthening methods are developed and used to rehabilitate existing structure. One of the popualr methods is the strengthening with steel plate. But steel plate have a defect that is a debondig at the end of the steel plate due to stress concentration. The objective of this paper is an experimental study for improving bonding properties of a strengthening plate. The two normally reinforced beams and ten strengthened beams steel plate, which has various notches were tested. The test results show that the notches of strengthening plate improve post-yield behavior significantly compared. It is proved that the notch in a strengthening plate increase of ulimate strength after the yield strength 9% more than ordinary strengthening method.

  • PDF

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF

Development of remote RW technology for fuel multi-pin fabrication (핵연료 멀티핀 제조용 원격 저항용접기술 개발)

  • Kim, Su-Seong;Gu, Dae-Seo;Lee, Jeong-Won;Park, Geun-Il;Jo, Dae-Sik
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.89-91
    • /
    • 2006
  • An analysis of a multi-pin remote welding for a DUPIC fuel fabrication was made to establish the optimum welding processes in a hot cell environment. An initial investigation for hands-on fabrication outside the hot cell was performed, and the constraints of a hot cell welding were considered. Preliminary welding performances to improve the RW process were also examined. The RW process was determined to be the best in a hot cell environment for joining the end plate to the end caps. This paper presents an outline of the developed RW machine for a DUPIC fuel fabrication and compares the characteristics of a Zr-4 end plate welding by using electrical resistance and LB methods. The weld nuggets of RW specimens and torque strengths of resistant and LB welded zones were also investigated.

  • PDF

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Numerical Study on the Strength Safety of High Pressure Gas Cylinder (고압가스 압력용기의 강도안전성에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The strength safety of high pressure gas cylinder has been analyzed by using a finite element method. In this study, the internal gas pressures of a steel bombe include a service charging pressure of $9kg/cm^2$, high limit charging pressure of $18.6kg/cm^2$, high limit of safety valve operation pressure $24.5kg/cm^2$, and hydraulic testing pressure of $34.5kg/cm^2$. The computed FEM results indicate that the strength safety for a service charging pressure of $9kg/cm^2$ and high limit charging pressure of $18.6kg/cm^2$ is safe because the stress of a gas cylinder is within yield strength of steel. But the stress for a hydraulic testing pressure of $34.5kg/cm^2$ sufficiently exceeds the yield strength and remains under the tensile strength. If the hydraulic testing pressures frequently apply to the gas cylinder, the bombe may be fractured because a fatigue residual stress is accumulated on the lower round end plate due to a plastic deformation. The computed results show that the concentrated force in which is applied on a skirt zone does not affect to the lower round end plate, and the most weak zone of a bombe is a middle part of a lower round end plate between a bombe body and a skirt for a gas pressure. Thus, the FEM results show that the profile of a lower round end plate is an important design parameter of a high pressure gas cylinder.