• 제목/요약/키워드: End-Of-Life Module

Search Result 21, Processing Time 0.03 seconds

Prediction of End of Life Photovoltaic Modules with Feed in Tariff (발전차액제도가 고려된 태양광 폐모듈 발생량 예측)

  • Park, Jongsung;Lim, Cheolhyun;Kim, Wooram;Park, Byungwook;Lee, Jin-seok;Lee, Sukho
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2020
  • In this study, we predict the generation of end-of-life photovoltaic modules when Feed in Tariff applied, in Republic of Korea. Based on the installation of photovoltaic modules, we prepared three different senarios in order to estimate the generation of end-of-life photovoltaic modules. The senarios are i) early worn-out, ii) mid worn-out and iii) late-worn out senario. We selected the mid worn-out senario to estimated the amount of end-of-life photovoltaic modules in this study. Establishment of the end-of-life module generation scenario predicted generation of end-of-life photovoltaic module, and forecasted generation amount of end-of-life module to which Feed in Tariff was applied in consideration of installed photovoltaic modules installed by Feed in Tariff support. The generation of Feed in Tariff-applied end-of-life modules increased from 2021 to 2025 compared to without Feed in Tariff, and since then, the Feed in Tariff-applied end-of-life modules were generated as waste modules during the relevant period (2021 ~ 2025).

The Eco-Architecture for Optimal End-Of-Life Strategy for Complex Products : An Extension to Hierarchical Analysis (제품의 사용 후 처리전략 수립 최적화를 위한 계층적 에코 아키텍쳐 분석방법론)

  • Kwak, Min Jung;Lee, Hyun Bok;Hong, Yoo Suk;Cho, Nam Wook;Choi, Keon Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.79-89
    • /
    • 2008
  • An end-of-life strategy is concerned with how to disassemble a product and what to do with each of the resultingdisassembled parts. A sound understanding of the end-of-life strategy at the early design stage could improve theease of disassembly and recycling in an efficient and effective manner. Therefore, the end-of-life decisionmaking for environmental conscious design has become a great concern to product manufacturers.We introduce a novel concept ofeco-architecture which represents a scheme by which the physical componentsare allocated to end-of-life modules. An end-of-life module is a physical chunk of connected components or afeasible subassembly which can be simultaneously processed by the same end-of-life option without furtherdisassembly. In this paper, a method for analyzing the eco-architecture of a product at the configuration designstage is proposed. It produces an optimal eco-architecture under the given environmental regulations. To dealwith the case ofa complex product, the method is extended for analyzing hierarchical eco-architecture.

Development of the High Voltage EIS Instrument for the Evaluation of the Residual Useful Life of the Batteries (배터리의 잔여 수명 평가를 위한 고압 임피던스 분광장치의 개발.)

  • Farooq, Farhan;khan, Asad;Lee, Seung June;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.216-217
    • /
    • 2019
  • The battery powered electric vehicle (EV) is one of most promising technologies in 21st century. Though the lithium batteries are playing an important role in the EVs, they are only applicable until their capacities reach 80%, the end of its useful first life. Yet, these batteries can live a second life such as Energy Storage Systems (ESS). In order to utilize the Residual Useful Life (RUL) of the batteries the State of Health (SOH) of them needs to be estimated by a nondestructive test such as Electrochemical Impedance Spectroscopy (EIS) technique. Though many kinds of different EIS instruments are commercially available, most of them can only test a battery module less than 10V and the price of the instrument is very high. In this paper a low-cost EIS instrument suitable for measuring the impedance spectrum of the high voltage battery module is proposed and its validity is verified through the experiments. In order to prove the accuracy of the developed EIS instrument its measured impedance spectrum is compared with the results obtained by a commercial instrument. The Chi Square value calculated between two impedance spectrum measured by both developed and commercial instruments are less than 2%, which prove the strong correlation between two results.

  • PDF

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.

Recycling of End-of-Life Photovoltaic Silicon Modules (사용 후 태양광 실리콘 모듈의 리싸이클링)

  • Kim, Joon Soo;Cho, Jae Young;Lee, Jae Kyung;Park, Areum;Park, Jin Hyuk;Yun, Hyun Mok;Jun, Yun-Su
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, it is increasing a amount of installized solar-cell rapidly, and waste Solar cell module are generated in according to the reduction of efficiency largely. Therefore, it is concerned at the environmental problems and recycling of valuable materials, greatly. The treatment processes of end-of-life photovoltaic modules are composed the disassembly of Aluminum frames, separation of Tempered glass, removal of Ethylene Vinyl Acetate and recovery of valuable Metals. For the efficient recycling, we are considered to the treatment technology seriously. And we are proposed on the general opinions according to the developing technology, EPR (Extended Producer Responsibility) problems and promotion plans for the activation of recycling industry.

Fatigue Behavior of PP-LFT used in FEM Carreir with Variation of Stress Ratio (FEM Carrier용 PP-LFT 소재의 응력비 변화에 따른 피로 거동)

  • Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Plastics have brought a significant progress in reducing the weight of automotive parts and improving gas emissions by replacing steel parts. The front end module (FEM) carrier, which was made from long glass fiber reinforced polypropylene (PP-LFT), is one of the most successful examples. On the other hand, more research on the fatigue behavior and vibration durability of automotive plastic parts will be needed to improve the long-term reliability. This paper analyzed the durability of the PP-LFT, which is fundamental to fatigue design and analysis of FEM carrier. Various fatigue tests were conducted at different stress ratios to evaluate the relationship between the fatigue life and stress amplitude or mean stress level. In the case of a fixed stress amplitude, the change in fatigue life with the stress ratio was 2~6% larger than the case of fixed maximum stress. Furthermore, this study observed the mechanism of initiation and propagation of the fatigue cracks in PP-LFT by scanning electron microscopy.

Evaluation of Quality of Life in Turkish Patients with Head and Neck Cancer

  • Akkas, Ebru Atasever;Yucel, Birsen;Kilickap, Saadettin;Altuntas, Emine Elif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4805-4809
    • /
    • 2013
  • Background: In this study, our aim was to investigate the effect of factors, such as radiotherapy, the dose of radiotherapy, the region of radiotherapy, the age of the patient, performance, co-morbidity, the stage of the disease and the therapy modalities on the quality of life of patients with head and neck cancer. Materials and Methods: Eighty-two patients who were treated by either chemoradiotherapy or radiotherapy, at the Cumhuriyet University Faculty of Medicine, Department of Radiation Oncology, between February 2007 and September 2010, for head and neck cancer were included. The quality of life European Organisation for Research and Treatment of Cancer, Questionnaire module to be used in Quality of Life assessments in Head and Neck Cancer (EORTC QLQ-H&N35) questionnaire was conducted in all patients before starting the radiotherapy, in the middle, at the end, at 1 month and at 6 months after the treatment. Results: According to the questionnaires at the end and at the $6^{th}$ month after the radiotherapy, it was found that the age of the patient, co-morbidity, ECOG performance state, localization, type of treatment, the stage of the disease, the dose and the region of radiotherapy affect some of the symptom scales for quality of life. Conclusions: Quality of life was affected negatively during and after the radiotherapy. However, in the $6^{th}$ month after the therapy, a significant improvement was observed in most symptoms.

Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation (고온동작소자의 패키징을 위한 천이액상확산접합 기술)

  • Jung, Do-hyun;Roh, Myung-hwan;Lee, Jun-hyeong;Kim, Kyung-heum;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

Joint Property of Sn-Cu-Cr(Ca) Middle Temperature Solder for Automotive Electronic Module (자동차 전장모듈용 Sn-Cu-Cr(Ca) 중온 솔더의 접합특성 연구)

  • Bang, Junghwan;Yu, Dong-Yurl;Ko, Yong-Ho;Kim, Jeonghan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.54-58
    • /
    • 2013
  • Joint properties of vehicle ECU (Electric Control Unit) module which was manufactured by using Sn-Cu-Cr-Ca alloy were investigated. A new solder which has a middle melting temperature about $231^{\circ}C$ was fabricated as the type of 300um solder ball and paste type. The prototype modules were made by reflow process and measured spreadability, wettability shear strength and estimated interface reaction. The spreadability of the alloy was about 84% from the measurement of contact angle of the solder ball and the wetting force was measured 2mN. The average shear strength of the module which was manufactured by using the solder paste, was 1.9 $kg/mm^2$. Also, the thickness of IMC(intermetallic compound) was evaluated with various aging temperature and time in order to understand Cr effect on Sn-0.7Cu solder. $Cu_6Sn_5$ IMC was formed between Cu pad and the solder alloy and the average thickness of the $Cu_6Sn_5$ IMC was measured about 4um and it was about 50% of thickness of $Cu_6Sn_5$ IMC in Sn-0.7Cu. It is expected to have a positive effect on reliability of the solder joint.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.