• Title/Summary/Keyword: End-Fire Antenna

Search Result 13, Processing Time 0.017 seconds

The Properties of Open-Ended Meander Slot Antenna and its Applications to Antenna Design

  • Lee, Young-Soon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.7
    • /
    • pp.563-568
    • /
    • 2011
  • The various properties such as the electric current distribution, resonant frequency and radiation patterns of open-ended meander slot antenna placed on a small ground plane, are investigated to give the help in performing antenna design. Based upon these characteristics, the designed antenna which is only 22mm($0.06{\lambda}_g$) in height and 31mm($0.09{\lambda}_g$) in width can operate at the 433 MHz with the measured radiation efficiency of 8% and end-fire radiation pattern. These properties make the antenna suitable for the handheld device such as the wireless remote controller.

High Efficiency Tapered Waveguide Antenna for End-fire Optical Phased Array Device (종단방출형 광위상배열 장치를 위한 고효율 안테나)

  • Byeongchan Park;Nan Ei Yu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.235-240
    • /
    • 2023
  • The optical signal injected into an end-fire optical phased array propagates along the waveguides inside the device and is emitted from the edge of the antenna. In general, reflection and scattering occur at the boundary, thereby reducing the emission efficiency of the optical signal. In this article, we propose a silicon nitride (Si3N4) tapered waveguide antenna structure whose width is tapered toward the emitting edge, achieving high emission efficiency operating at the 1,550 nm wavelength. The Si3N4 tapered waveguide antenna was numerically designed using the 3D finite-difference time-domain method. The optical signal emission efficiency increased from 78% to 96.3%, while reflectance decreased from 22% to 3.7% compared with the untapered waveguide antenna counterpart. This result will not only boost the optical signal intensity but also mitigate optical noise resulting from back reflection along the waveguide in the end-fire optical phased array device.

Analysis of Corugated Surface Wave Antenna Using Hybrid MOM/UTD Method (하이브리드 MOM/UTD 방법을 이용한 주름진 표면파 안테나의 해석)

  • Kim, Joong-Pyo;Lee, Chang-Won;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.359-367
    • /
    • 1999
  • The analysis of a surface wave antenna with the corrugated ground plane fed by a parallel-plate waveguide is considered. An equivalent theorem Is employed to subdivide the original problem into three regions for the simple analysis : one concerning the geometry inside the shorted parallel-plate(Internal region 1), one concerning the geometry of the corrugation(Internal region 2), and one concerning the geometry of the conducting wedge(External region). The hybrid method of moment(MOM)/uniform geometrical theory of diffraction(UTD) method is applied to analyze a corrugated surface wave antenna with the end-fire radiation. Our numerical results are very well matched with those of the previous experiment, better results are obtained when compared with those of the previous simple equivalent current approach. Also, we can obtain the parameters to design an effective end-fire corrugated surface wave antenna.

  • PDF

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

Design of wideband microstrip monopole slot antenna (광대역 마이크로스트립 모노폴 슬롯안테나의 설계)

  • Lee, Young-Soon;Cho, Yun-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.766-772
    • /
    • 2012
  • In the present study, wideband microstrip monopole slot antennas which can be applied to the RF4CE Zigbee remote controller are designed. First I-shaped monopole slot antenna which has ${\lambda}g/4$ length at 2.45GHz is designed. In particular, a conducting via is used to connect the microstrip feed line and the ground plane surrounded with the etched slot for the bandwidth improvement. In order to reduce the antenna size, it is changed into L-shaped and T-shaped monopole slot antennas for which improve results of antenna performance are observed. In case of T-shaped monopole slot antenna, impedance bandwidth(VSWR<2) is about 3.32GHz, and also its radiation efficiency and gain is more than 90% and 2.1dBi respectively at whole operating frequency range. In particular, all of proposed monopole slot antennas have the end-fire radiations which has a maximum radiation power toward direction of open ends of monopole slots.

Design of a Wideband Antipodal Vivaldi Antenna with an Asymmetric Parasitic Patch

  • Bang, Jihoon;Lee, Juneseok;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • An antipodal Vivaldi antenna with a compact parasitic patch to overcome radiation performance degradations in the high-frequency band is proposed. For this purpose, a double asymmetric trapezoidal parasitic patch is designed and added to the aperture of an antipodal Vivaldi antenna. The patch is designed to efficiently focus the beam toward the end-fire direction at high frequencies by utilizing field coupling between the main radiating patch and the inserted parasitic patch. As a result, this technique considerably improves the gain and stability of radiation patterns at high frequencies. The proposed antenna has a peak gain greater than 9 dBi over the frequency range of 6-26.5 GHz.

Design and Implementation of Tapered Slot Antenna for Ship's Indoor Location-Aware System (선박 실내 위치 인식을 위한 테이퍼드 슬롯 안테나 설계 및 구현)

  • Choi, Dong-You;Kim, Sun-Woong;Park, Jung-Jin;Jeong, Min-A;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1307-1313
    • /
    • 2014
  • In this paper, we have proposed a tapered slot antenna for IR-UWB communication system suitable of indoor positioning in the building. The designed tapered slot antenna is designed using Ansys Inc. HFSS and its standing wave ratio, return loss, and radiation pattern is analyzed. In 2.36 GHz ~ 5.51 GHz and, the designed antenna shows satisfactory return loss at -10 dB and meets the requirement of $VSWR{\leq}2$. The presented designed showed a higher sensitivity for the end-fire propagation characteristics in a specific direction across all bands of the radiation pattern.

Design of a Nature-inspired Wideband Sprout-leaf Antenna (자연모사 기반 광대역 새싹 안테나 설계)

  • Woo, Dongsik;Bae, Sunghyun
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.536-542
    • /
    • 2020
  • This paper presents a nature-inspired wideband sprout-leaf shaped antenna with end-fire radiation pattern. A sprout-leaf shape angled-radiator was designed for wide beamwidth radiation patterns for motion detection sensors. An extended and truncated ground plane was used as a reflector for end-fire radiation patterns. To feed the balanced radiator, a broadband microstrip (MS) to coplanar stripline (CPS) balun was utilized with excellent amplitude and phase balance. The proposed antenna demonstrates wide frequency bandwidth from 8.5 to 14.5 GHz with wide beamwidth and the radiation efficiency of 90%. The measured gain is from 4 to 5 dBi and front-to-back ratio was 10 to 20 dB. It has been shown that the proposed antenna can be used for imaging sensors, phased array systems, and radars that require a wide bandwidth and a directional radiation pattern.

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.

A Terahertz Yagi-Uda Antenna with High Input Impedance (높은 입력 임피던스를 가지는 테라헤르츠 Yagi-Uda 안테나)

  • Han, Kyung-Ho;Nguyen, Troung Khang;Park, Ik-Mo;Han, Hae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2009
  • In this paper, a THz Yagi-Uda antenna with high input impedance is designed. By placing the antenna on a thin substrate, end-fire radiation patterns with high antenna impedance can be obtained even when the substrate has high relative dielectric constant. The proposed Yagi-Uda antenna has high input resistance of approximately $4,400{\Omega}$ at the resonance frequency which is obtained by using a U-shaped dipole as a driver element. It is expected that the Yagi-Uda antenna on a thin substrate can achieve much higher terahertz output power than the conventional THz antennas.