• Title/Summary/Keyword: End quench test

Search Result 3, Processing Time 0.013 seconds

Speed-torque Characteristics of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars by the Variation of the Rotor resistance (회전자 저항변화에 따른 고온초전도 단락봉을 사용한 농형유도전동기의 속도-토크 특성)

  • Sim Jung-wook;Lee Kwang-youn;Cha Guee-soo;Lee Ji-kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.33-37
    • /
    • 2004
  • This paper presents the construction and test results of an HTS induction motor. End rings and short bars were made of HTS tapes, To increase the efficiency and starting torque, HTS tapes can be used as the rotor bars. Because large current is induced in the rotor circuit, HTS tapes quench and high starting torque can be obtained. As the speed of rotor builds up. HTS tapes which are used as short bars become superconducting state again. After the HTS tapes recover from quench, resistance of the rotor circuit is nearly zero. In that case, power loss in rotor circuit is eliminated. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity of the conventional motor was 0.75 kW. Performances of the HTS induction motor were compared with those of the conventional motor with same volume and specification. Test result showed that the speeds of the HTS induction motor were the same with synchronous speed up to 2.6 Nm and 1.788 rpm at 9.7 Nm. It guarantees the high efficiency of the HTS motor. Starting torque of the HTS motor was more than twice of the conventional motor.

Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method (Ni/Mo 합금분말(FLC-4608)의 소결경화 공정에서 유한요소법을 이용한 마르텐사이트 분율의 예측)

  • Park, Hyo Wook;Joo, Soo-Hyun;Lee, Eon Sik;Kwon, Ki Hyuk;Kim, Hyong Seop
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.

Performance of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars at Stable Operating Region (고온초전도단락봉을 사용한 농형유도전동기의 안정영역 특성)

  • 심정욱;차귀수;이지광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.442-447
    • /
    • 2003
  • Motors with HTS wires or bulks have been developing recently. Those are large synchronous motor with HTS wires at the field winding in the rotor, hysteresis and reluctance motors with HTS bulk in the rotor. This paper presents the fabrication and test results of an HTS induction motor. Conventional end rings and short bars were replaced with HTS wires in the motor. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity and rpm at full rotor of the conventional motor were 0.75[kW] and 1,710[rpm]. Two, HTS wires are used in parallel to make the end rings and bars. The critical current of the BSCCO-2223 HTS wire which was used in the bars and end rings were 115[A]. Electrodynamometer was coupled directly to the shaft of the rotor with HTS wires.