• Title/Summary/Keyword: End edge cogging force

Search Result 3, Processing Time 0.018 seconds

End Edge Cogging Force Minimization according to the Distance between Armatures of Stationary Discontinuous Armature PMLSM with Concentrated Winding (전기자 분산배치 집중권 PMLSM의 전기자 간격에 따른 단부 코깅력 최소화)

  • Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1241-1246
    • /
    • 2013
  • Currently, The general transportation system arranges the armature on the full length of transportation lines. However, when this method is applied to the long distance transportation system, it causes an increase of material cost and manufacturing time. Thus, in order to resolve this problem, discontinuous arrangement method of the armature has been proposed. However, in the method of using stationary discontinuous armatures, mover can stop in the freewheeling section which is non-installations section when disturbance is generated and the mover can not be moved because armature control is impossible. Thus, the distance determination of armature is very important. Also, when the armature is arranged discontinuously the edge always exists due to the structure. Due to this edge, the cogging force is greatly generated during the entry and ejection of the mover to the armature. This cogging force causes thrust force ripple generating noise, vibration and decline of performance, it must be reduced. Therefore, in this paper, we examined the end edge cogging force generated by the stationary discontinuous armatures through 2-D numerical analysis using finite element method (FEM) and we figured out distance of armature for end edge cogging force minimization.

The Analysis of Skewed Armature Effect for Reduction of End Edge Cogging Force of Stationary Discontinuous Armature PMLSM (전기자 분산배치 PMLSM의 단부 코깅력 저감을 위한 전기자 스큐각의 영향 분석)

  • Kim, Yong-Jae;Kim, Jae-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.243-248
    • /
    • 2014
  • The permanent magnet linear synchronous motors facilitate maintenance, for it is structurally simple compare to rotating machine and has lots of advantage such as a precision control, high speed, high thrust and so on. However, it causes an increase of material cost because of structural characteristics that need to arranges the armature on the full length of transportation lines. Thus, in order to resolve this problem, we propose the discontinuous arrangement method of the armature but the edge always exists due to the structure when the armature is arranged discontinuously. Due to this edge, the cogging force is greatly generated and it causes thrust force ripple generating noise, vibration and decline of performance. Therefore, in this paper, we examined the characteristic of end edge according to the skew angle through 3-D numerical analysis using finite element method(FEM) and improved the operation characteristics.

Reduction Design of End Edge Effect in Stationary Discontinuous Armature PMLSM combined with Skewed Magnets and Stair Shape Auxiliary Teeth

  • Kim, Min-Seok;Kim, Yong-Jae
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • In recent years, a permanent magnet linear synchronous motor (PMLSM) has been used in various kinds of transportation applications for its relative high power density and efficiency. The general transportation system arranges the armature on the full length of transportation lines. However, when this method is applied to long distance transportation system, it causes increase of material cost and manufacturing time. Thus, in order to resolve this problem, we suggested stationary discontinuous armature PMLSM. However, the stationary discontinuous armature PMLSM contains the edges which always exist as a result of the discontinuous arrangement of the armature. These edges become a problem because the cogging force that they exert bad influences the controllability of the motor. Therefore, in this paper we proposed the combination of skewed magnets and stair shape auxiliary teeth to reduce the force by edge effect. Moreover, we analyzed the influence of the design factors by using a 3-D finite element method (FEM) simulation tool.