• Title/Summary/Keyword: End Milling Process

Search Result 257, Processing Time 0.024 seconds

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Effects of Nano-sized Calcium Carbonate on Physical and Optical Properties of Paper (나노사이즈 탄산칼슘이 종이의 물리·광학적 특성에 미치는 영향)

  • Park, Jung-Yoon;Lee, Tai-Ju;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • In papermaking industry, inorganic fillers are widely used for the purpose of improving opacity, brightness, printability, uniformity and dimensional stability. They are also useful for production costs and energy savings. In the past, inorganic fillers in papermaking industry only focused on micro-scale but recently, new trials on nano-powdered technology are applying. Even nano-powdered fillers are rapidly utilized for improving the optical and surface properties in coating and surface sizing, there still have some problems in wet-end process due to poor dispersibility and retention. In this study, nano-particled calcium carbonate was produced by milling the PCC and its applicability between micro sized and nano sized calcium carbonated was compared in wet-end process, and finally the sheet properties were evaluated. Nano-PCC was not retained in sheet structure without applying retention system, but with retention system nano-powdered PCC was absorbed on fiber surface with expanding the fiber networks. The application of PAM-bentonite system has resulted in high ash retention and bulky structure for copier paper, and good optical properties in brightness and opacity. However, it required to solve the weakness of low tensile property due to interruption of hydrogen bonding by nano fillers.

Cutting Force Variation of Inconel 718 in Up and Down Endmilling with Different Helix Angles. (인코넬 718의 상향 및 하향 엔드밀링시 헬릭스각에 따른 절삭력 변화)

  • Lee, Young-Moon;Lee, Sun-Ho;Tae, Won-Ik;Kwon, O-Jin;Choi, Bong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.143-148
    • /
    • 2001
  • In this study, a mechanistic model of cutting force components in up and down end milling process is presented. Using this cutting force model of 4-tooth endmills with various helix angles, cutting force variation of inconel 718 has been predicted. Predicted values of cutting force components are coincide well with the measured ones. As helix angle increases, overlapping effects of the active cutting edges increase. In up endmilling the magnitudes of radial and feed cutting force componts FX and FY are lowest when the helix angle is $40\{\circ}$, but in down endmilling the magnitudes of these values increase slightly as helix angle becomes large.

  • PDF

PC-Camera based Monitoring for Unattended NC Machining (무인가공을 위한 PC 카메라 기반의 모니터링)

  • Song, Shi-Yong;Ko, Key-Hoon;Choi, Byoung-Kyu
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • In order to make best use of NC machine tools with minimal labor costs, they need to be in operation 24 hours a day without being attended by human operators except for setup and tool changes. Thus, unattended machining is becoming a dream of every modern machine shop. However, without a proper mechanism for real-time monitoring of the machining processes, unattended machine could lead to a disaster. Investigated in this paper are ways to using PC camera as a real-time monitoring system for unattended NC milling operations. This study defined five machining states READY, NORMAL MACHINING, ABNORMAL MACHINING, COLLISION and END-OF-MACHINING and modeled them with DEVS (discrete event system) formalism. An image change detection algorithm has been developed to detect the table movements and a flame and smoke detection algorithm to detect unstable cutting process. Spindle on/off and cutting status could be successfully detected from the sound signals. Initial experimentation shows that the PC camera could be used as a reliable monitoring system for unattended NC machining.

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

The effect of reactive gases on the propertise of TiCN layer synthesized by Arc Ion plating process (Arc Ion Plating 방식에 의한 TiCN 증착시 반응가스가 코팅층에 미치는 영향)

  • Seo, Chang-Min;Kim, Chang-Geun;;Yu, Im-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.56-68
    • /
    • 1997
  • This work was intended to study the effect of a partial pressure ratio and a total pressure of reactive gases on the properties of TiC$_{x}$N$_{1-x}$ . coated layer. In this regard, various TiC$_{x}$N$_{1-x}$ coatings were synthesized with C2112 and N2 Mixture gas of different compositions by Arc Ion Plating process which has been highlighted for an industrial purpose. It was revealed from colors and X-ray diffraction patterns that the concentration of carbon of a TiC$_{x}$N$_{1-x}$ coating increases with a partial pressure ratio (PC$_{2}$H$_{2}$/PN$_{2}$) as well as a total pressure Of $C_{2}$H$_{2}$ and N$_{2}$ mixture gas. Accordingly, the hardness of TiC$_{x}$N$_{1-x}$ coated layer increased but the adhesion to the substrate of SKH 51 was degraded. On the other hand, the deposition rate was independent of a partial pressure ratio and a total pressure of mixture gas. It was found that a uniform gas distribution is critical for an industrial application since the composition of a coating depends strongly on the location of a substrate inside of the furnace. As a result of milling tests with different TiC$_{x}$N$_{1-x}$ coated end mills, the one which has a low carbon concentration was better than others studied in this work.d in this work.

  • PDF

Effect of h-BN Content on Microstructure and Mechanical Properties of AIN Ceramics (AIN 세라믹스의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 이영환;김준규;조원승;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.874-880
    • /
    • 2003
  • The effect of h-BN content on microstructure, mechanical properties, and machinability of AlN-BN based machinable ceramics were investigated. The relative density of sintered compact decreased with increasing h-BN content. The four-point flexural strength also decreased from 238 MPa of monolith up to 182 MPa by the addition of 30 vol% h-BN. Both low Young's modulus and residual tensile stress, formed by the thermal expansion coefficient difference between AIN and h-BN, might cause the strength drop in AlN-BN composite. The crack deflection, and pull-out phenomena increased by the plate-like h-BN. However, the fracture toughness decreased with h-BN content. The second phases, consisted of YAG and ${\gamma}$-Al$_2$O$_3$, were formed by the reaction between Al$_2$O$_3$ and Y$_2$O$_3$. During end-milling process, feed and thrust forces measured for AlN-(10~30) vol% BN composites decreased with increasing h-BN particles, showing excellent machinability. Also, irrespective of h-BN content, relatively good surfaces with roughness less than 0.5 m (Ra) could be achieved within short lapping time.