• Title/Summary/Keyword: End Loading Effect

Search Result 147, Processing Time 0.023 seconds

The Effect of Spacing of Transverse Steel on R/C Column Laterally Reinforced with Head Subjected to Eccentric Loading (Head로 횡구속된 편심하중을 받는 R/C기둥의 띠철근비의 영향)

  • Yoon, Seung-Joe;Lee, Woo-Jin;Kim, Sang-Koo;Yoon, Yong-Dae;Seo, Soo-Yeon;Kim, Seoung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.62-65
    • /
    • 2006
  • This study investigated the behavior of R/C column confined with headed crossties subjected to eccentric loading. The 16 specimens are designed to have adequate confinement steel, determined by ACI seismic design. The variables studied in this research test are eccentricity to depth ratios, spacing of lateral steel and the anchor type of end of crossties. From the test results, all columns showed similar behavior up to the peak load but those columns laterally confined with head presented more ductile behavior after the peak load. The comparisons indicate that the flexural behavior of confined-concrete columns can be computed resonable accurately by P-M interaction curve.

  • PDF

A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

  • Vinyas., M;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.465-485
    • /
    • 2017
  • In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.

Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials (탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향)

  • Hwang, Jin-Ho;Hwang, Woon-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

The Effect of Music Rope-jumping with Weight Loading on Middle School Girls` Blood Lipids and Growth Hormone (중량부하 음악줄넘기 운동이 여자중학생의 혈중지질과 성장호르몬에 미치는 영향)

  • Jeoung, Pil-Jae;Lee, Mi-Kyoung;Yang, Joung-Ok
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1115-1122
    • /
    • 2008
  • The purpose of this study is to identify the effect of rope-jumping to music with weight loading on middle school girls' blood lipid and growth hormone. Toward this end, the study targeted 24 middle school girls at Y Girls' Middle School in Yangsan, Gyeongnam, who have no health problems or exercise experience, after sufficiently explaining to them the study's purpose. The selected students were categorized into a music rope-jumping group (8), a music rope-jumping group with weight loading (8), and a control group (8). In a comparison of blood lipid within the exercise groups showed that the music rope-jumping groups' measures changed significantly by demonstrating increases or decreases in RBC, T-C, TG, HDL-C and LDL-C (p<0.05). The music rope-jumping group with weight loading showed significant differences in WBC, RBC, glucose, T-C, TG, HDL-C and LDL-C by demonstrating increases of decreases (p<0.05). A comparison between the exercise groups revealed that the music rope-jumping group showed significant increases in growth hormone (p<0.05). The music rope-jumping group with weight loading also showed significant increases in growth hormone (p<0.05). The study's results identified music jump-roping with weight loading to effect students' blood lipids and growth hormone.

A Study on the Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 층간파괴인성치에 관한 연구)

  • Kim, Hyung-Jin;Gwark, Dae-Won;Lee, Hern-Sik;Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.328-336
    • /
    • 2004
  • This paper describes the effect of loading rate, specimen geometries and material properties for ModeⅠ and Mode Ⅱ interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. In the range of loading rate 0.2~20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (Gc).The value of Gc for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of Gc are highest with the increasing intial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.

An Experimental Study on Ultimate Behavior of Thin-walled Carbon Steel Bolted Connections with Varying Plate Thickness and End Distance (평판두께와 연단거리를 변수로 갖는 박판탄소강 볼트접합부의 종국거동에 관한 실험적 연구)

  • Lee, Yong Taeg;Kim, Tae Soo;Jeong, Ha Young;Kim, Seung Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.527-536
    • /
    • 2009
  • The purpose of this experimental study was to investigate the block shear fracture behavior and curling effect on a single shear-bolted connection in thin-walled carbon steel fabricated with four bolts. The specimens that fail by block shear were planned to have a constant dimension of the edge distance perpendicular to the loading direction, bolt diameter, pitch, and gage. The main variables of the specimens were plate thickness and end distance parallel to the loading direction. A monotonic tensile test was carried out for the bolted connections, and the ultimate behaviors, such as the fracture shape, ultimate strength, and curling, were compared with those that had been predicted using the current design specifications. The conditions of curling occurrence in terms of plate thickness and end distance were also investigated, and the strength reduction due to curling was considered.

Cushion Characterics at Cushioning Zones of Pneumatic Cushion Cylinder by Orifice Existence of Cushion Sleeve (공압 쿠션실린더에서 쿠션슬리브의 오피리스 유.무에 따른 쿠션영 역에서 쿠션특성)

  • 박재범;염만오;장성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.435-439
    • /
    • 2002
  • In the pneumatic system, pneumatic cylinder is wildly used to factory automation. In general, Pneumatic cylinder problems are occured with colliding to stroke end part at which piston collide to end-cap, head cap and tube when piston is loading. This appearances have a short life of cylinder and is due to system destruction. This study examines the dynamic characteristics of pneumatic cushioning cylinder and cushion sleeve design. At head part cushion chamber for the vertical experimental, The decisions of cushioning effect and the results of the experimental research are obtained to the followings: i) The cushioning effects could acqure to the reserch, if the compressible energy is more than kinetic ones. ii) The collision of piston and head cover could acqure to the research, if the kinetic energy is more than compressible iii) If the load increase to the rolling car, the cushion region pressures would increase and the dynamic force.

  • PDF

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

Stress Distribution of Buried Concrete Pipe Under Various Environmental Conditions

  • Lee, Janggeun;Kang, Jae Mo;Ban, Hoki;Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.65-72
    • /
    • 2016
  • There are numerous factors that affect stress distribution in a buried pipe, such as the shape, size, and stiffness of the pipe, its burial depth, and the stiffness of the surrounding soil. In addition, the pipe can benefit from the soil arching effect to some extent, through which the overburden and surcharge pressure at the crown can be carried by the adjacent soil. As a result, the buried pipe needs to support only a portion of the load that is not transferred to the adjacent soil. This paper presents numerical efforts to investigate the stress distribution in the buried concrete pipe under various environmental conditions. To that end, a nonlinear elasto-plastic model for backfill materials was implemented into finite element software by a user-defined subroutine (user material, or UMAT) to more precisely analyze the soil behavior surrounding a buried concrete pipe subjected to surface loading. In addition, three different backfill materials with a native soil were selected to examine the material-specific stress distribution in pipe. The environmental conditions considering in this study the loading effect and void effects were investigated using finite element method. The simulation results provide information on how the pressures are redistributed, and how the buried concrete pipe behaves under various environmental conditions.