• Title/Summary/Keyword: End Cap Welding

Search Result 15, Processing Time 0.02 seconds

A study on the Optimum Conditions of Nd:YAG LBW for Zircaloy-4 End Cap Closure By Optical Fiber Transmission (광섬유전송에 의한 Zircaloy-4 봉단마개밀봉의 Nd:YAG LBW의 최적조건에 관한 연구)

  • 김수성;김웅기;이영호
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.85-95
    • /
    • 1997
  • This study is to investigate the optimum conditions of Nd:YAG laser beam welding for Zircaloy-4 end cap closure by optical fiber transmission. Laser welding parameters which affect the penetration depth and bead width were experimentally examined using the various beam radius by the beam quality analyzer, joint geometries of end cap and the laser parameters which mean pulse width, repetition rate and pulse energy. Also, an optimum welding speed and the effect of assistant gas with varying the flow rate of He were investigated. We found that the laser average power for the end cap welding will be 230W and rotation speed must not exceed 8 RPM, the best position of focus using optical fiber with 600.mu.m will be 2 to 3mm below the surface of the material.

  • PDF

Technology of the End Cap Laser Welding for Irradiation Fuel Rods (조사연료봉 봉단마개의 레이저용접기술)

  • 김수성;이정원;고진현;이영호
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.20-25
    • /
    • 2003
  • Various welding methods such as Gas Tungsten Arc Welding(GTAW), magnetic force electrical resistance welding and Laser Beam Welding(LBW) are now available for end cap closure of nuclear fuel rods. Even though the resistance and GTA welding processes are widely used in manufacturing commercial fuel rods, they can not be recommended for the remote seal welding of fuel rods in the hot cell Facility due to the complexity of the electrode alignment, the difficulty in replacing parts in a remote manner and the large heat input for the thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for the end cap welding of irradiation fuel rods in the hot cell. The remote laser welding apparatus in the hot cell Facility was developed using a pulsed Nd:YAG laser of 500 watt average power with an optical fiber transmission. The weldment quality such as microstructure and mechanical strength was satisfactory. The optimum conditions of laser welding for encapsulating irradiation fuel rods in the hot cell were obtained.

A Study on the Characteristics of Zircaloy-4 End Cap Welding of Nuclear Fuel Pin Using Nd:YAG LB and GTA (Nd:YAG LB 와 GTA 를 of용한 핵연료봉의 Zircaloy-4 봉단용접특성에 관한 연구)

  • 김수성;이정원;양명승;이영호
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.81-92
    • /
    • 1996
  • This study is to compare the weldability of Zircaloy-4 end cap of nuclear fuel pin using by GTA and Nd :YAG LB. The welding parameters which affect bead width and penetration depth have been investigated. The effect of joint geometry of end cap for GTAW and LBW has been studied and optimum conditions of Zircaloy-4 endcap welding have been found. Microstructures and microhardness of GTA and LB welded zones have been also compared.

  • PDF

A Study on the Characteristics of Zr-4 End Cap Welded Joints Using Resistance Upset Welding (저항업셋 용접법을 이용한 Zr-4 End Cap용접부의 특성에 관한 연구)

  • 박철주;김형수;이영호;강원석
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.240-249
    • /
    • 1992
  • The objective of this study is to investigate the characteristics of welded joints on the Zircaloy-4 resistance upset welding for HWR(Heavy Water reactor)fuel rods. To estimate the characteristics of welded joints, the various tests were performed on the test coupons systematically with a wide range of each welding parameters in terms of a tensile test, burst test, knoop hardness test and metallography. Major results obtained in this study are as follows: 1. The tube and machined with 120.deg. projection was the reliable weld joint design for the nuclear fuel rod end cap welding. 2. As the weld current and the amount of upset increased linearly with increasing welding main heat input, it could make an estimate of their variation in accordance with the phase shift control. 3. It was found that an increase in squeeze force has an effect on the upset contour of welded joint because the amount of upset were increased by the change of squeeze force.

  • PDF

An Investigation of Welding Variables on Resistance Upset Welding for End Capping of HWR Fuel Elements (중수로 핵연료 봉단마개의 저항업셋 용접을 위한 용접변수)

  • 이정원;박춘호;고진현;정성훈;정문규
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.60-69
    • /
    • 1989
  • The present study was aimed at investigating the effect of welding parameters such as welding current, electrode force(or squeeze force) and parts cleaning on the sound weld, and establishing the most reliable weld conditions for HWP(Heavy Water Reactor) fuel end capping with the resistance upset butt welding. Major results obtained are as follows. 1. The amount of sound weld was increased with increasing weld current(5.0-11KA) because the activated diffusion with increasing heat generation played an important role in eliminating the porosity and weld line in the weld interface. 2. It was found that weld current was not significantly influenced by the electrode force although the increase of it caused a slight increase of weld current and upset deformation. 3. Acetone rinsing before drying for the Zircaloy-4 end cap cleaning produced the reliable sound weld because it would remove the remaining solvent and surface films, and provided the uniform contact between the end cap and the tube. 4. The optimum welding conditions for fuel end capping by a resistance upset hytt welding are obtained as follows. weld current: 10-11KA, electrode force: 62-90KPa parts cleaning: vapor degreasing.rarw.water, acetone rinsing.rarw.drying.

  • PDF

Investigation on Nd:YAG Laser Weldability of Zircaloy-4 End Cap Closure for Nuclear Fuel Elements

  • Kim, Soo-Sung;Lee, Chul-Yung;Yang, Myung-Seung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Various welding processes are now available for end cap closure of nuclear fuel element such as TG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulity in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed The effects of irradiation on the properties of the laser apparatus were also being studied.

  • PDF

Mechanical Strength and Ultransonic Testing of End Cap Welds in Pressurized Heavy Water Reactor Fuel (중수로핵연료 봉단마개 용접부의 기계적 특성과 초음파 시험)

  • 이정원;최명선;정성훈;고진현
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.60-68
    • /
    • 1991
  • The weld quality of end cap welds in Pressurized Heavy Water Reactor (PHWR) Fuel is extremely important for the fuel performance in the nuclear reactor. The quality of resistance upset welds is currently evaluated mainly by the metallographic examination although it reveals only two weld cross-sections in a circumference welds. This investigation was, firstly, carried out to determine whether the ultrasonic examination would be applied to detect weld defects in the end cap welds and, secondly, to measure the mechanical strength of upset butt welds as a function of phase shift percentage. The major results obtained in this study are as follows: 1. The weld current and amount of upset shrinkage linearly increased with increasing the phase shift percentage. 2. Above the phase shift 55%, the defects in the welds were completely eliminated with increasing the phase of sound weld was over the thickness of cladding tube. 3. The ultrasonic testing well detected such defects in the end cap welds as upset external crack, upset split, corner crack and irregular weld flash comparing with the results of metallography. 4. The micro-fissure in the corner of the end cap welds was reliably detected by ultrasonic testing. 5. The mechanical strength in the welds increased with increasing phase shift percentage but the fracture did't occur in the welds above 55%.

  • PDF

Technology of Remote Bundle Welding for CANDU Fuels (중수로 연료용 원격다발 용접기술)

  • Kim, S.S.;Lee, J.W.;Park, G.I.;Koh, J.H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.33-33
    • /
    • 2009
  • This study is to develop the resistance welding apparatus and investigate the welding characteristics of Zircaloy-4 end-plate of fuel bundle in the cases of the resistance welding and the laser beam welding. The welding parameters which affect the weld nugget and the torque values have been also compared. The effect of the torque strength of end-plate welding using by the resistance welding and the laser beam welding has been studied and optimum conditions of Zircaloy-4 end-plate welding have been found. Futhermore, micro-structures and micro-hardness of the resistance welded specimens have been also compared.

  • PDF

A Basic Study on Eddy Current Testing of End-Cap Welds (봉단 용접부 와전류탐상의 기초적인 연구)

  • Suh, D.M.;Sim, K.S.;Kwon, W.J.;Kim, J.H.;Park, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 1998
  • In nuclear fuel manufacturing process, end-closure welding has long been recognized as requiring very high integrity. In this basic study, ECT(eddy current testing) method for end-closure welding has been developed to detect end cap weld discontinuities for nuclear fuel safety. In order to improve the inspection reliability, the maximum scanning speed and the maximum frequency is investigated for end-closure welding inspection. The bandpass filter(0-250Hz) is used for removing noise effects. This study shows that ECT method is effective and sensitive for the detection of small defect(0.35mm diameter).

  • PDF