• Title/Summary/Keyword: Encryption key

Search Result 995, Processing Time 0.026 seconds

Integrated Data Structure for Quantum Key Management in Quantum Cryptographic Network (양자암호 통신망에서 양자키 관리를 위한 통합 데이터 구조)

  • Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.3-7
    • /
    • 2021
  • In quantum cryptographic communication based on quantum mechanics, each piece of information is loaded onto individual photons and transmitted. Therefore, it is impossible to eavesdrop on only a part, and even if an intruder illegally intercepts a photon and retransmits it to the recipient, it is impossible to send the same information to the photon by the principle of quantum duplication impossible. With the explosive increase of various network-based services, the security of the service is required to be guaranteed, and the establishment of a quantum cryptographic communication network and related services are being promoted in various forms. However, apart from the development of Quantum Key Distribution (QKD) technology, a lot of research is needed on how to provide network-level services using this. In this paper, based on the quantum encryption device, we propose an integrated data structure for transferring quantum keys between various quantum encryption communication network devices and realizing an encrypted transmission environment.

Provably secure attribute based signcryption with delegated computation and efficient key updating

  • Hong, Hanshu;Xia, Yunhao;Sun, Zhixin;Liu, Ximeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2646-2659
    • /
    • 2017
  • Equipped with the advantages of flexible access control and fine-grained authentication, attribute based signcryption is diffusely designed for security preservation in many scenarios. However, realizing efficient key evolution and reducing the calculation costs are two challenges which should be given full consideration in attribute based cryptosystem. In this paper, we present a key-policy attribute based signcryption scheme (KP-ABSC) with delegated computation and efficient key updating. In our scheme, an access structure is embedded into user's private key, while ciphertexts corresponds a target attribute set. Only the two are matched can a user decrypt and verify the ciphertexts. When the access privileges have to be altered or key exposure happens, the system will evolve into the next time slice to preserve the forward security. What's more, data receivers can delegate most of the de-signcryption task to data server, which can reduce the calculation on client's side. By performance analysis, our scheme is shown to be secure and more efficient, which makes it a promising method for data protection in data outsourcing systems.

Related-Key Differential Attacks on CHESS-64

  • Luo, Wei;Guo, Jiansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3266-3285
    • /
    • 2014
  • With limited computing and storage resources, many network applications of encryption algorithms require low power devices and fast computing components. CHESS-64 is designed by employing simple key scheduling and Data-Dependent operations (DDO) as main cryptographic components. Hardware performance for Field Programmable Gate Arrays (FPGA) and for Application Specific Integrated Circuits (ASIC) proves that CHESS-64 is a very flexible and powerful new cipher. In this paper, the security of CHESS-64 block cipher under related-key differential cryptanalysis is studied. Based on the differential properties of DDOs, we construct two types of related-key differential characteristics with one-bit difference in the master key. To recover 74 bits key, two key recovery algorithms are proposed based on the two types of related-key differential characteristics, and the corresponding data complexity is about $2^{42.9}$ chosen-plaintexts, computing complexity is about $2^{42.9}$ CHESS-64 encryptions, storage complexity is about $2^{26.6}$ bits of storage resources. To break the cipher, an exhaustive attack is implemented to recover the rest 54 bits key. These works demonstrate an effective and general way to attack DDO-based ciphers.

Chaotic Block Encryption Using a PLCM (PLCM을 이용한 카오스 블록 암호화)

  • Shin Jae-Ho;Lee Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.10-19
    • /
    • 2006
  • In this paper, we propose 128-bit chaotic block encryption scheme using a PLCM(Piecewise Linear Chaotic Map) having a good dynamical property. The proposed scheme has a block size of 12n-bit and a key size of 125-bit. The encrypted code is generated from the output of PLCM. We show the proposed scheme is very secure against statistical attacks and have very good avalanche effect and randomness properties.

New Constructions of Hierarchical Attribute-Based Encryption for Fine-Grained Access Control in Cloud Computing

  • Zhang, Leyou;Hu, Yupu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1343-1356
    • /
    • 2013
  • Cloud computing has emerged as perhaps the hottest development in information technology at present. This new computing technology requires that the users ensure that their infrastructure is safety and that their data and applications are protected. In addition, the customer must ensure that the provider has taken the proper security measures to protect their information. In order to achieve fine-grained and flexible access control for cloud computing, a new construction of hierarchical attribute-based encryption(HABE) with Ciphertext-Policy is proposed in this paper. The proposed scheme inherits flexibility and delegation of hierarchical identity-based cryptography, and achieves scalability due to the hierarchical structure. The new scheme has constant size ciphertexts since it consists of two group elements. In addition, the security of the new construction is achieved in the standard model which avoids the potential defects in the existing works. Under the decision bilinear Diffie-Hellman exponent assumption, the proposed scheme is provable security against Chosen-plaintext Attack(CPA). Furthermore, we also show the proposed scheme can be transferred to a CCA(Chosen-ciphertext Attack) secure scheme.

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE

  • Chen, Zehong;Zhang, Peng;Zhang, Fangguo;Huang, Jiwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2292-2309
    • /
    • 2017
  • Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.

Improving Security and Privacy-Preserving in Multi-Authorities Ciphertext-Policy Attribute-Based Encryption

  • Hu, Shengzhou;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5100-5119
    • /
    • 2018
  • Most of existing privacy-preserving multi-authorities attribute-based encryption schemes (PP-MA-ABE) only considers the privacy of the user identity (ID). However, in many occasions information leakage is caused by the disclosing of his/her some sensitive attributes. In this paper, we propose a collusion-resisting ciphertext-policy PP-MA-ABE (CRPP-MACP-ABE) scheme with hiding both user's ID and attributes in the cloud storage system. We present a method to depict anonymous users and introduce a managerial role denoted by IDM for the management of user's anonymous identity certificate ($AID_{Cred}$). The scheme uses $AID_{Cred}$ to realize privacy-preserving of the user, namely, by verifying which attribute authorities (AAs) obtain the blinded public attribute keys, pseudonyms involved in the $AID_{Cred}$ and then distributes corresponding private keys for the user. We use different pseudonyms of the user to resist the collusion attack launched by viciousAAs. In addition, we utilize IDM to cooperate with multiple authorities in producing consistent private key for the user to avoid the collusion attack launched by vicious users. The proposed CRPP-MACP-ABE scheme is proved secure. Some computation and communication costs in our scheme are finished in preparation phase (i.e. user registration). Compared with the existing schemes, our scheme is more efficient.

DCT and Homomorphic Encryption based Watermarking Scheme in Buyer-seller Watermarking Protocol

  • Seong, Teak-Young;Kwon, Ki-Chang;Lee, Suk-Hwan;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1402-1411
    • /
    • 2014
  • Buyer-seller watermarking protocol is defined as the practice of imperceptible altering a digital content to embed a message using watermarking in the encryption domain. This protocol is acknowledged as one kind of copyright protection techniques in electronic commerce. Buyer-seller watermarking protocol is fundamentally based on public-key cryptosystem that is operating using the algebraic property of an integer. However, in general usage, digital contents which are handled in watermarking scheme mostly exist as real numbers in frequency domain through DCT, DFT, DWT, etc. Therefore, in order to use the watermarking scheme in a cryptographic protocol, digital contents that exist as real number must be transformed into integer type through preprocessing beforehand. In this paper, we presented a new watermarking scheme in an encrypted domain in an image that is based on the block-DCT framework and homomorphic encryption method for buyer-seller watermarking protocol. We applied integral-processing in order to modify the decimal layer. And we designed a direction-adaptive watermarking scheme by analyzing distribution property of the frequency coefficients in a block using JND threshold. From the experimental results, the proposed scheme was confirmed to have a good robustness and invisibility.

A Design for Network Security System via Non-security Common Network (일반망과 보안망을 연계한 네트워크 보안체계 설계)

  • Cho, Chang-Bong;Lee, Sang-Guk;Dho, Kyeong-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.609-614
    • /
    • 2009
  • In this paper, we have proposed a design for security network system passing through the non-security network which is commonly used for various networking services. Based on the security requirements which are assumed that the large classified data are bi-transmitted between a server and several terminals remotely located, some application methods of security techniques are suggested such as the network separation technique, the scale-down application technique of certification management system based on the PKI(Public Key Infrastructure), the double encryption application using the crypto-equipment and the asymmetric keys encryption algorithm, unrecoverable data deleting technique and system access control using USB device. It is expected that the application of this design technique for the security network causes to increase the efficiency of the existing network facilities and reduce the cost for developing and maintaining of new and traditional network security systems.