• Title/Summary/Keyword: Encryption Algorithms

Search Result 240, Processing Time 0.03 seconds

Analysis of Encryption Algorithm Performance by Workload in BigData Platform (빅데이터 플랫폼 환경에서의 워크로드별 암호화 알고리즘 성능 분석)

  • Lee, Sunju;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1305-1317
    • /
    • 2019
  • Although encryption for data protection is essential in the big data platform environment of public institutions and corporations, much performance verification studies on encryption algorithms considering actual big data workloads have not been conducted. In this paper, we analyzed the performance change of AES, ARIA, and 3DES for each of six workloads of big data by adding data and nodes in MongoDB environment. This enables us to identify the optimal block-based cryptographic algorithm for each workload in the big data platform environment, and test the performance of MongoDB by testing various workloads in data and node configurations using the NoSQL Database Benchmark (YCSB). We propose an optimized architecture that takes into account.

Implementation of Optimized 1st-Order Masking AES Algorithm Against Side-Channel-Analysis (부채널 분석 대응을 위한 1차 마스킹 AES 알고리즘 최적화 구현)

  • Kim, Kyung Ho;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.9
    • /
    • pp.225-230
    • /
    • 2019
  • Recently, with the development of Internet technology, various encryption algorithms have been adopted to protect the sensing data measured by hardware devices. The Advanced Encryption Standard (AES), the most widely used encryption algorithm in the world, is also used in many devices with strong security. However, it has been found that the AES algorithm is vulnerable to side channel analysis attacks such as Differential Power Analysis (DPA) and Correlation Power Analysis (CPA). In this paper, we present a software optimization implementation technique of the AES algorithm applying the most widely known masking technique among side channel analysis attack methods.

An Efficient Multi-Layer Encryption Framework with Authentication for EHR in Mobile Crowd Computing

  • kumar, Rethina;Ganapathy, Gopinath;Kang, GeonUk
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.204-210
    • /
    • 2019
  • Mobile Crowd Computing is one of the most efficient and effective way to collect the Electronic health records and they are very intelligent in processing them. Mobile Crowd Computing can handle, analyze and process the huge volumes of Electronic Health Records (EHR) from the high-performance Cloud Environment. Electronic Health Records are very sensitive, so they need to be secured, authenticated and processed efficiently. However, security, privacy and authentication of Electronic health records(EHR) and Patient health records(PHR) in the Mobile Crowd Computing Environment have become a critical issue that restricts many healthcare services from using Crowd Computing services .Our proposed Efficient Multi-layer Encryption Framework(MLEF) applies a set of multiple security Algorithms to provide access control over integrity, confidentiality, privacy and authentication with cost efficient to the Electronic health records(HER)and Patient health records(PHR). Our system provides the efficient way to create an environment that is capable of capturing, storing, searching, sharing, analyzing and authenticating electronic healthcare records efficiently to provide right intervention to the right patient at the right time in the Mobile Crowd Computing Environment.

A Study of Field Application Process of Public Key Algorithm RSA Based on Mathematical Principles and Characteristics through a Diagnostic (수학원리와 특성 진단을 기반으로 한 공개키 RSA 알고리즘의 현장 적용 프로세스)

  • Noh, SiChoon;Song, EunJee;Moon, SongChul
    • Journal of Service Research and Studies
    • /
    • v.5 no.2
    • /
    • pp.71-81
    • /
    • 2015
  • The RSA public key encryption algorithm, a few, key generation, factoring, the Euler function, key setup, a joint expression law, the application process are serial indexes. The foundation of such algorithms are mathematical principles. The first concept from mathematics principle is applied from how to obtain a minority. It is to obtain a product of two very large prime numbers, but readily tracking station the original two prime number, the product are used in a very hard principles. If a very large prime numbers p and q to obtain, then the product is the two $n=p{\times}q$ easy station, a method for tracking the number of p and q from n synthesis and it is substantially impossible. The RSA encryption algorithm, the number of digits in order to implement the inverse calculation is difficult mathematical one-way function and uses the integer factorization problem of a large amount. Factoring the concept of the calculation of the mod is difficult to use in addition to the problem in the reverse direction. But the interests of the encryption algorithm implementation usually are focused on introducing the film the first time you use encryption algorithm but we have to know how to go through some process applied to the field work This study presents a field force applied encryption process scheme based on public key algorithms attribute diagnosis.

Attribute-based Broadcast Encryption Algorithm applicable to Satellite Broadcasting (위성방송에 적용 가능한 속성기반 암호전송 알고리즘)

  • Lee, Moon-Shik;Kim, Deuk-Su;Kang, Sun-Bu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.9-17
    • /
    • 2019
  • In this paper, we propose an attribute-based broadcast encryption algorithm that can be applied to satellite broadcasting network. The encryption algorithm is a cryptographic method by which a carrier(sender) can transmit contents efficiently and securely to a plurality of legitimate users through satellites. An attribute-based encryption algorithm encrypts contents according to property of contents or a user, In this paper, we combine effectively two algorithms to improve the safety and operability of satellite broadcasting network. That is, it can efficiently transmit ciphertexts to a large number of users, and has an advantage in that decoding can be controlled by combining various attributes. The proposed algorithm reduces the network load by greatly reducing the size of the public key, the private key and the cipher text in terms of efficiency, and the decryption operation amount is reduced by half to enable fast decryption, thereby enhancing the operability of the user.

Message Security Level Integration with IoTES: A Design Dependent Encryption Selection Model for IoT Devices

  • Saleh, Matasem;Jhanjhi, NZ;Abdullah, Azween;Saher, Raazia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.328-342
    • /
    • 2022
  • The Internet of Things (IoT) is a technology that offers lucrative services in various industries to facilitate human communities. Important information on people and their surroundings has been gathered to ensure the availability of these services. This data is vulnerable to cybersecurity since it is sent over the internet and kept in third-party databases. Implementation of data encryption is an integral approach for IoT device designers to protect IoT data. For a variety of reasons, IoT device designers have been unable to discover appropriate encryption to use. The static support provided by research and concerned organizations to assist designers in picking appropriate encryption costs a significant amount of time and effort. IoTES is a web app that uses machine language to address a lack of support from researchers and organizations, as ML has been shown to improve data-driven human decision-making. IoTES still has some weaknesses, which are highlighted in this research. To improve the support, these shortcomings must be addressed. This study proposes the "IoTES with Security" model by adding support for the security level provided by the encryption algorithm to the traditional IoTES model. We evaluated our technique for encryption algorithms with available security levels and compared the accuracy of our model with traditional IoTES. Our model improves IoTES by helping users make security-oriented decisions while choosing the appropriate algorithm for their IoT data.

Modular Multiplication Algorithm Design for Application of Cryptosystem based on Public Key Structure (공개키 기반의 암호 시스템에 적합한 모듈러 연산기 알고리즘의 효율적인 설계)

  • Kim, Jungl-Tae;Hur, Chang-Woo;Ryu, Kwang-Ryul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.469-472
    • /
    • 2003
  • The computational cost of encryption is a barrier to wider application of a variety of data security protocols. Virtually all research on Elliptic Curve Cryptography(ECC) provides evidence to suggest that ECC can provide a family of encryption algorithms that implementation than do current widely used methods. This efficiency is obtained since ECC allows much shorter key lengths for equivalent levels of security. This paper suggests how improvements in execution of ECC algorithms can be obtained by changing the representation of the elements of the finite field of the ECC algorithm. Specifically, this research compares the time complexity of ECC computation eve. a variety of finite fields with elements expressed in the polynomial basis(PB) and normal basis(NB).

  • PDF

A Study on the Certification System in Electromic Commerce (전자상거래(電子商去來)의 인증체계(認證體系)에 관한 고찰(考察))

  • Ha, Kang Hun
    • Journal of Arbitration Studies
    • /
    • v.9 no.1
    • /
    • pp.367-390
    • /
    • 1999
  • The basic requirements for conducting electronic commerce include confidentiality, integrity, authentication and authorization. Cryptographic algorithms, make possible use of powerful authentication and encryption methods. Cryptographic techniques offer essential types of services for electronic commerce : authentication, non-repudiation. The oldest form of key-based cryptography is called secret-key or symmetric encryption. Public-key systems offer some advantages. The public key pair can be rapidly distributed. We don't have to send a copy of your public key to all the respondents. Fast cryptographic algorithms for generating message digests are known as one-way hash function. In order to use public-key cryptography, we need to generate a public key and a private key. We could use e-mail to send public key to all the correspondents. A better, trusted way of distributing public keys is to use a certification authority. A certification authority will accept our public key, along with some proof of identity, and serve as a repository of digital certificates. The digital certificate acts like an electronic driver's license. The Korea government is trying to set up the Public Key Infrastructure for certificate authorities. Both governments and the international business community must involve archiving keys with trusted third parties within a key management infrastructure. The archived keys would be managed, secured by governments under due process of law and strict accountability. It is important that all the nations continue efforts to develop an escrowed key in frastructure based on voluntary use and international standards and agreements.

  • PDF

Development of Application Service for Secure Container Transport Based on CSD (CSD 기반의 컨테이너 안전운송 응용 서비스 개발)

  • Choo, Young-Yeol;Choi, Su-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2203-2208
    • /
    • 2011
  • In this paper, we describe application service development for secure land and marine transport based on CSD (Conveyance Security Device) systems. Based on CSD systems, we present application service and security service according to relevant standards as well as test procedure of developed services. Exploiting temperature, moisture, impact sensors, state monitoring function of container freight was developed to prevent disaster during transportation in addition to security function with CSD. For confidentiality of messages exchanged among application service entity and CSD systems, Encryption and decryption functions going by RC5 and AES-128 algorithms were implemented at desktop PC and 8 bit CPU environments, respectively. Measuring the elapsed time during encryption and decryption shows that two algorithms are allowable for the application service.

A Layered Protection Scheme for Scalable Video Coding (스케일러블 비디오 부호화에 대한 계층적 보호 기법)

  • Hendry, Hendry;Kim, Mun-Churl;Hahm, Sang-Jin;Lee, Keun-Sik;Park, Keung-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.307-312
    • /
    • 2006
  • Protection to the multimedia contents is inevitable to ensure that only authorized users be able to access the protected contents for consumption. Since protection mechanisms need to be designed efficiently by exploiting the type of the contents, we propose a protection scheme for the video bitstream encoded by Scalable Video Coding (SVC) technique. Our scheme exploits the property of SVC in which a video is encoded into spatial, temporal, and quality scalability layers. By applying our proposed protection scheme to the appropriate scalability layers we can effectively control the SVC contents completely or partially. Each layer can be flexibly protected with different encryption keys or even with different encryption algorithms. The algorithms that are used to protect each layer are described by the standardized protection description tool, which is the MPEG-21 Intellectual Property Management and Protection (IPMP) Components. In this paper, we present the design of the proposed layered SVC protection scheme, its implementation and experimental results. The experiment result shows that the proposed layered SVC protection scheme is very effective and can easily be applied.

  • PDF