• Title/Summary/Keyword: Encryption Algorithms

Search Result 239, Processing Time 0.032 seconds

Enhanced Privacy Preservation of Cloud Data by using ElGamal Elliptic Curve (EGEC) Homomorphic Encryption Scheme

  • vedaraj, M.;Ezhumalai, P.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4522-4536
    • /
    • 2020
  • Nowadays, cloud is the fastest emerging technology in the IT industry. We can store and retrieve data from the cloud. The most frequently occurring problems in the cloud are security and privacy preservation of data. For improving its security, secret information must be protected from various illegal accesses. Numerous traditional cryptography algorithms have been used to increase the privacy in preserving cloud data. Still, there are some problems in privacy protection because of its reduced security. Thus, this article proposes an ElGamal Elliptic Curve (EGEC) Homomorphic encryption scheme for safeguarding the confidentiality of data stored in a cloud. The Users who hold a data can encipher the input data using the proposed EGEC encryption scheme. The homomorphic operations are computed on encrypted data. Whenever user sends data access permission requests to the cloud data storage. The Cloud Service Provider (CSP) validates the user access policy and provides the encrypted data to the user. ElGamal Elliptic Curve (EGEC) decryption was used to generate an original input data. The proposed EGEC homomorphic encryption scheme can be tested using different performance metrics such as execution time, encryption time, decryption time, memory usage, encryption throughput, and decryption throughput. However, efficacy of the ElGamal Elliptic Curve (EGEC) Homomorphic Encryption approach is explained by the comparison study of conventional approaches.

Image Encryption by C-MLCA and 3-dimensional Chaotic Cat Map using Laplace Expansions (C-MLCA와 Laplace 전개를 이용한 3차원 카오스 캣맵에 의한 영상 암호)

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1187-1196
    • /
    • 2019
  • Information security has become a major challenge with the advent of cloud and social networking sites. Conventional encryption algorithms might not be suitable for image encryption because of the large data size and high redundancy among the raw pixels of a digital image. In this paper, we generalize the encryption method for of color image proposed by Jeong et al. to color image encryption using parametric 3-dimensional chaotic cat map using Laplace expansion and C-MLCA. Through rigorous experiments, we demonstrate that the proposed new image encryption system provides high security and reliability.

Secure Fingerprint Identification System based on Optical Encryption (광 암호화를 이용한 안전한 지문 인식 시스템)

  • 한종욱;김춘수;박광호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2415-2423
    • /
    • 1999
  • We propose a new optical method which conceals the data of authorized persons by encryption before they are stored or compared in the pattern recognition system for security systems. This proposed security system is made up of two subsystems : a proposed optical encryption system and a pattern recognition system based on the JTC which has been shown to perform well. In this system, each image of authorized persons as a reference image is stored in memory units through the proposed encryption system. And if a fingerprint image is placed in the input plane of this security system for access to a restricted area, the image is encoded by the encryption system then compared with the encrypted reference image. Therefore because the captured input image and the reference data are encrypted, it is difficult to decrypt the image if one does not know the encryption key bit stream. The basic idea is that the input image is encrypted by performing optical XOR operations with the key bit stream that is generated by digital encryption algorithms. The optical XOR operations between the key bit stream and the input image are performed by the polarization encoding method using the polarization characteristics of LCDs. The results of XOR operations which are detected by a CCD camera should be used as an input to the JTC for comparison with a data base. We have verified the idea proposed here with computer simulations and the simulation results were also shown.

  • PDF

Chaos-based Image Encryption Scheme using Noise-induced Synchronization (잡음으로 동기화 된 혼돈신호를 이용한 이미지 암호화 방법)

  • Yim, Geo-Su;Kim, Hong-Sop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.155-162
    • /
    • 2008
  • The security of digital image has become increasingly important with the development of the computing performance and internet. Therefore, the encryption algorithms exploiting chaos signal have recently attracted considerable attentions as a new method of image-encryption techniques. In this Paper, it is demonstrated that two different chaotic systems are synchronized by the methods of noise-induced synchronization. Based on this synchronization method, an image-encryption system is implemented and an image of Seok-Ga-Tap is encrypted as a verification of the performance of our system. The method suggested in this paper in which the noise is used as the key of decryption is superior to the existing methods in the aspect of the degree of encryption. In this paper, we Propose that the method is a new effective encryption algorithm as well as an easily applicable one.

  • PDF

A Study on Efficient Data De-Identification Method for Blockchain DID

  • Min, Youn-A
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2021
  • Blockchain is a technology that enables trust-based consensus and verification based on a decentralized network. Distributed ID (DID) is based on a decentralized structure, and users have the right to manage their own ID. Recently, interest in self-sovereign identity authentication is increasing. In this paper, as a method for transparent and safe sovereignty management of data, among data pseudonymization techniques for blockchain use, various methods for data encryption processing are examined. The public key technique (homomorphic encryption) has high flexibility and security because different algorithms are applied to the entire sentence for encryption and decryption. As a result, the computational efficiency decreases. The hash function method (MD5) can maintain flexibility and is higher than the security-related two-way encryption method, but there is a threat of collision. Zero-knowledge proof is based on public key encryption based on a mutual proof method, and complex formulas are applied to processes such as personal identification, key distribution, and digital signature. It requires consensus and verification process, so the operation efficiency is lowered to the level of O (logeN) ~ O(N2). In this paper, data encryption processing for blockchain DID, based on zero-knowledge proof, was proposed and a one-way encryption method considering data use range and frequency of use was proposed. Based on the content presented in the thesis, it is possible to process corrected zero-knowledge proof and to process data efficiently.

Similarity measurement based on Min-Hash for Preserving Privacy

  • Cha, Hyun-Jong;Yang, Ho-Kyung;Song, You-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.240-245
    • /
    • 2022
  • Because of the importance of the information, encryption algorithms are heavily used. Raw data is encrypted and secure, but problems arise when the key for decryption is exposed. In particular, large-scale Internet sites such as Facebook and Amazon suffer serious damage when user data is exposed. Recently, research into a new fourth-generation encryption technology that can protect user-related data without the use of a key required for encryption is attracting attention. Also, data clustering technology using encryption is attracting attention. In this paper, we try to reduce key exposure by using homomorphic encryption. In addition, we want to maintain privacy through similarity measurement. Additionally, holistic similarity measurements are time-consuming and expensive as the data size and scope increases. Therefore, Min-Hash has been studied to efficiently estimate the similarity between two signatures Methods of measuring similarity that have been studied in the past are time-consuming and expensive as the size and area of data increases. However, Min-Hash allowed us to efficiently infer the similarity between the two sets. Min-Hash is widely used for anti-plagiarism, graph and image analysis, and genetic analysis. Therefore, this paper reports privacy using homomorphic encryption and presents a model for efficient similarity measurement using Min-Hash.

Review Of Some Cryptographic Algorithms In Cloud Computing

  • Alharbi, Mawaddah Fouad;Aldosari, Fahd;Alharbi, Nawaf Fouad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.41-50
    • /
    • 2021
  • Cloud computing is one of the most expanding technologies nowadays; it offers many benefits that make it more cost-effective and more reliable in the business. This paper highlights the various benefits of cloud computing and discusses different cryptography algorithms being used to secure communications in cloud computing environments. Moreover, this thesis aims to propose some improvements to enhance the security and safety of cloud computing technologies.

Collusion-Resistant Unidirectional Proxy Re-Encryption Scheme from Lattices

  • Kim, Kee Sung;Jeong, Ik Rae
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Most of the previous proxy re-encryption schemes rely on the average-case hardness problems such as the integer factorization problems and the discrete logarithm problems. Therefore, they cannot guarantee its security under quantum analysis, since there exist quantum algorithms efficiently solving the factorization and logarithm problems. In the paper, we propose the first proxy re-encryption scheme based on the hard worst-case lattice problems. Our scheme has many useful properties as follows: Unidirectional, collusion-resistant, noninteractive, proxy invisible, key optimal, and nontransitive.We also provided the formal security proof of the proposed scheme in the random oracle model.

Query with SUM Aggregate Function on Encrypted Floating-Point Numbers in Cloud

  • Zhu, Taipeng;Zou, Xianxia;Pan, Jiuhui
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.573-589
    • /
    • 2017
  • Cloud computing is an attractive solution that can provide low cost storage and powerful processing capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of information should be considered by any organization migrating to cloud, which makes the research on relational database system based on encryption schemes to preserve the integrity and confidentiality of data in cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and later do some extra processes to accomplish the summation.

Design and Implementation of a Security Program for Supersafe Document Using Ancient and Modern Cryptography (고대 및 현대 암호 방식을 결합한 초안전 문서 보안 프로그램의 설계 및 구현)

  • You, Yeonsoo;Lee, Samuel Sangkon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1913-1927
    • /
    • 2017
  • Encryption technology is to hide information in a cyberspace built using a computer and to prevent third parties from changing it. If a malicious user accesses unauthorized device or application services on the Internet of objects, it may be exposed to various security threats such as data leakage, denial of service, and privacy violation. One way to deal with these security threats is to encrypt and deliver the data generated by a user. Encrypting data must be referred to a technique of changing data using a complicated algorithm so that no one else knows the content except for those with special knowledge. As computers process computations that can be done at a very high speed, current cryptographic techniques are vulnerable to future computer performance improvements. We designed and implemented a new encryption program that combines ancient and modern cryptography so that the user never knows about data management, and transmission. The significance of this paper is that it is the safest method to combine various kinds of encryption methods to secure the weaknesses of the used cryptographic algorithms.