• Title/Summary/Keyword: Encrypted Image

Search Result 176, Processing Time 0.025 seconds

Encryption and decryption using phase mapping of gray scale image based on a phase-shifting interferometry principle (위상천이 간섭계 원리에 기반한 계조도 영상의 위상 매핑을 이용한 암호화 및 복호화)

  • Seok-Hee Jeon;Sang-Keun Gil
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.271-278
    • /
    • 2024
  • An encryption and decryption method using phase mapping of a gray scale image based on a phase-shifting interferometry principle is proposed in which an encrypted image is formed into complex digital hologram function by symmetric security key in the proposed encryption system.. The gray scale image to be encrypted is converted to phase mapped function that is mixed with a randomly generated binary security encryption key and is used as an input. Decryption of phase information is performed by complex digital hologram and security encryption key, which reconstructs the original gray scale image by phase unmapping. The proposed method confirms that correlation coefficient of the decrypted image is 0.995 when quantization level of CCD is 8-bits(28=256 levels).

Ciphering Scheme and Hardware Implementation for MPEG-based Image/Video Security (DCT-기반 영상/비디오 보안을 위한 암호화 기법 및 하드웨어 구현)

  • Park Sung-Ho;Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.27-36
    • /
    • 2005
  • This thesis proposed an effective encryption method for the DCT-based image/video contents and made it possible to operate in a high speed by implementing it as an optimized hardware. By considering the increase in the amount of the calculation in the image/video compression, reconstruction and encryption, an partial encryption was performed, in which only the important information (DC and DPCM coefficients) were selected as the data to be encrypted. As the result, the encryption cost decreased when all the original image was encrypted. As the encryption algorithm one of the multi-mode AES, DES, or SEED can be used. The proposed encryption method was implemented in software to be experimented with TM-5 for about 1,000 test images. From the result, it was verified that to induce the original image from the encrypted one is not possible. At that situation, the decrease in compression ratio was only $1.6\%$. The hardware encryption system implemented in Verilog-HDL was synthesized to find the gate-level circuit in the SynopsysTM design compiler with the Hynix $0.25{\mu}m$ CMOS Phantom-cell library. Timing simulation was performed by Verilog-XL from CadenceTM, which resulted in the stable operation in the frequency above 100MHz. Accordingly, the proposed encryption method and the implemented hardware are expected to be effectively used as a good solution for the end-to-end security which is considered as one of the important problems.

A Study on Confidential Data Hiding Technique with Spatial Encryption for Color Image

  • Jung, Soo-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.85-88
    • /
    • 2019
  • In this paper, we propose a technique for spatially encrypting confidential data into R, G, B planes of color image and extracting spatially encrypted confidential data. The effectiveness of the proposed technique is verified by mathematically analyzing the quality of the stego-image generated using the proposed technique. The proposed technique can hide confidential data securely into cover image by spatially encrypting the confidential data, and can extract confidential data from the stego-image. The quality of the stego-image created by applying the proposed technique is very good. The average value of the quality of the stego-image is 51.14 dB. Therefore, it is not visually recognizable whether the confidential data is hidden in the stego-image. The proposed technique can be widely used for military and intellectual property protection.

Digital Evidence Collection Procedure for Hardware Unique Information Collection (하드웨어 고유 정보 수집에 대한 디지털 증거 수집 절차)

  • Pak, Chan-ung;Lee, Sang-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.839-845
    • /
    • 2018
  • Sensitive data is encrypted and stored as privacy policy is strengthened through frequent leakage of personal information. For this reason, the cryptographically owned encrypted data is a very important analysis from the viewpoint of digital forensics. Until now, the digital evidence collection procedure only considers imaging, so hardware specific information is not collected. If the encryption key is generated by information that is not left in the disk image, the encrypted data can not be decrypted. Recently, an application for performing encryption using hardware specific information has appeared. Therefore, in this paper, hardware specific information which does not remain in file form in auxiliary storage device is studied, and hardware specific information collection method is introduced.

Improved Single Feistel Circuit Supporter by A Chaotic Genetic Operator

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • This document outlines a new color image encryption technology development. After splitting the original image into 240-bit blocks and modifying the first block by an initialization vector, an improved Feistel circuit is applied, sponsored by a genetic crossover operator and then strong chaining between the encrypted block and the next clear block is attached to set up the confusion-diffusion and heighten the avalanche effect, which protects the system from any known attack. Simulations carried out on a large database of color images of different sizes and formats prove the robustness of such a system.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

Optical encryption of multiple images using amplitude mask and 2D chaos function (진폭 마스크와 2D 카오스 함수를 이용한 다중 이미지 광학 암호화)

  • Kim, Hwal;Jeon, Sungbin;Kim, Do-Hyung;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.50-54
    • /
    • 2014
  • Object image using DRPE(Double Random Phase Encryption) in 4f system is encrypted by space-division method using amplitude mask. However, this method has the weakness for the case of having partial data of amplitude mask which can access the original image. To improve the security, we propose the method using the 2-dimension logistic chaos function which shuffles the encrypted data. It is shown in simulation results that the proposed method is highly sensitive to chaos function parameters. To properly decrypt from shuffled encryption data, below 1e-5 % errors of each parameter should be required. Thus compared with conventional method the proposed shows the higher security level.

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.

A New Robust Blind Crypto-Watermarking Method for Medical Images Security

  • Mohamed Boussif;Oussema Boufares;Aloui Noureddine;Adnene Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • In this paper, we propose a novel robust blind crypto-watermarking method for medical images security based on hiding of DICOM patient information (patient name, age...) in the medical imaging. The DICOM patient information is encrypted using the AES standard algorithm before its insertion in the medical image. The cover image is divided in blocks of 8x8, in each we insert 1-bit of the encrypted watermark in the hybrid transform domain by applying respectively the 2D-LWT (Lifting wavelet transforms), the 2D-DCT (discrete cosine transforms), and the SVD (singular value decomposition). The scheme is tested by applying various attacks such as noise, filtering and compression. Experimental results show that no visible difference between the watermarked images and the original images and the test against attack shows the good robustness of the proposed algorithm.

Research on Multiple-image Encryption Scheme Based on Fourier Transform and Ghost Imaging Algorithm

  • Zhang, Leihong;Yuan, Xiao;Zhang, Dawei;Chen, Jian
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • A new multiple-image encryption scheme that is based on a compressive ghost imaging concept along with a Fourier transform sampling principle has been proposed. This further improves the security of the scheme. The scheme adopts a Fourier transform to sample the original multiple-image information respectively, utilizing the centrosymmetric conjugation property of the spatial spectrum of the images to obtain each Fourier coefficient in the most abundant spatial frequency band. Based on this sampling principle, the multiple images to be encrypted are grouped into a combined image, and then the compressive ghost imaging algorithm is used to improve the security, which reduces the amount of information transmission and improves the information transmission rate. Due to the presence of the compressive sensing algorithm, the scheme improves the accuracy of image reconstruction.