• Title/Summary/Keyword: Encrypted Image

Search Result 176, Processing Time 0.028 seconds

Optical Image Encryption Based on Characteristics of Square Law Detector (세기검출기를 이용한 광 영상 암호화)

  • Lee, Eung-Dae;Park, Se-Jun;Lee, Ha-Un;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.34-40
    • /
    • 2002
  • In this paper, a new encryption method for a binary image using Phase modulation and Fourier transform is proposed. For decryption we use the characteristics of square law detector. In encryption process, a key image is obtained by phase modulation of 256 level random pattern and its Fourier transformation, and input image is encrypted by Fourier transforming the multiplication of the phase modulated random pattern and phase modulated input image. The encrypted image and key image have only phase information, so they can not be copied or counterfeited and the original image can not be decrypted without the key image. To reconstruct the original image, each phase mask of the key image and the encrypted image must be placed on each path of the Mach-Zehnder interferometry with Fourier transform lens and the output image is obtained in the form of intensity in the CCD(Charge Coupled Device) camera. The real-time decryption is possible in the proposed system by use of a LCD as a phase modulator and a CCD camera as an intensity detector. The proposed method shows a good performance in the computer simulation and optical experiment as an encryption scheme.

Optical security system for protection of personal identification information (개인신원정보 보호를 위한 광 보호 시스템)

  • 윤종수;도양회
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.383-391
    • /
    • 2003
  • A new optical security system for the protection of personal identification information is proposed. Personal identification information consisting of a pure face image and an identification number is used for verification and authentication. Image encryption is performed by a fully phase image encryption technique with two random phase masks located in the input and the Fourier plane of 4-f correlator. The personal information, however, can be leaked out in the decryption process. To cope with this possibility, the encrypted image itself is used in the identification process. An encrypted personal identification number is discriminated and recognized by using the proposed MMACE_p (multiplexed MACE_p) filter, and then authenticity of the personal information is verified by correlation of the face image using the optical wavelet matched filter (OWMF). MMACE_p filter is a synthetic filter with four MACE_p (minimum average correlation energy_phase encrypted) filters multiplexed in one filter plane to recognize 10 different encrypted-numbers at a time. OWMF can improve discrimination capability and SNR (signal to noise ratio). Computer simulations confirmed that the proposed security technique can be applied to the protection of personal identification information.

QPSK Modulation Based Optical Image Cryptosystem Using Phase-shifting Digital Holography

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • We propose a new technique for the optical encryption of gray-level optical images digitized into 8-bits binary data by ASCII encoding followed by QPSK modulation. We made an encrypted digital hologram with a security key by using 2-step phase-shifting digital holography, and the encrypted digital hologram is recorded on a CCD camera with 256 gray-level quantized intensities. With these encrypted digital holograms, the phase values are reconstructed by the same security key and are decrypted into the original gray-level optical image by demodulation and decoding. Simulation results show that the proposed method can be used for cryptosystems and security systems.

An Implementation of Stable Optical Security System using Interferometer and Cascaded Phase Keys (간섭계와 직렬 위상 키를 이용한 안정한 광 보안 시스템의 구현)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, we proposed an stable optical security system using interferometer and cascaded phase keys. For the encryption process, a BPCGH(binary phase computer generated hologram) that reconstructs the origial image is designed, using an iterative algorithm and the resulting hologram is regarded as the image to be encrypted. The BPCGH is encrypted through the exclusive-OR operation with the random generated phase key image. For the decryption process, we cascade the encrypted image and phase key image and interfere with reference wave. Then decrypted hologram image is transformed into phase information. Finally, the origianl image is recovered by an inverse Fourier transformation of the phase information. During this process, interference intensity is very sensitive to external vibrations. a stable interference pattern is obtained using self-pumped phase-conjugate minor made of the photorefractive material. In the proposed security system, without a random generated key image, the original image can not be recovered. And we recover another hologram pattern according to the key images, so can be used an authorized system.

  • PDF

Implementation of Stable Optical Information Security System using Interference-based Computer Generated Hologram iud $BaTiO_3$ (간섭을 기반으로한 컴퓨터형성홀로그램과 $BaTiO_3$를 이용한 안정한 광 정보보호 시스템의 구현)

  • 김철수;김종윤;박영호;김수중;조창섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8C
    • /
    • pp.827-834
    • /
    • 2003
  • In this paper, we implemented an optical information security system using computer generated hologram based on the principle of interference and BaTiO$_3$that is photorefractive material. First of all, we would generate binary phase hologram which can reconstruct the original image perfectly, and regard this hologram as the image to be encrypted. And then applying the interference rule to the hologram, encrypted and reference (fkey information) images are generated. In the decrypting process, we can get an interference intensity by interfering the reference image and the encrypted image in the Mach-Zehnder interferometer. and transforming interference intensity information into phase information using LCD(liquid crystal display) and finally recover original image by inverse Fourier transforming the phase information. In this process, the Intensity information generated by interference of two images is very sensitive to external vibrations. So, we get a stable interference using the characteristic of SPPCM(self pumped phase conjugate mirror) of BaTiO$_3$that is photorefractive material. The proposed method has an advantage of double image encryption by encrypting the hologram of the image instead of original image.

Phase-based virtual image encryption and decryption system using Joint Transform Correlator

  • Seo, Dong-Hoan;Cho, Kyu-Bo;Park, Se-Joon;Cho, Woong-Ho;Noh, Duck-Soo;Kim, Soo-Joong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.450-453
    • /
    • 2002
  • In this paper a Phase-based virtual image encryption and decryption techniques based on a joint transform correlator (JTC) are proposed. In this method, an encrypted image is obtained by multiplying a phase-encoded virtual image that contains no information from the decrypted image with a random phase. Even if this encryption process converts a virtual image into a white-noise-like image, the unauthorized users can permit a counterfeiting of the encrypted image by analyzing the random phase mask using some phase-contrast technique. However, they cannot reconstruct the required image because the virtual image protects the original image from counterfeiting and unauthorized access. The proposed encryption technique does not suffer from strong auto-correlation terms appearing in the output plane. In addition, the reconstructed data can be directly transmitted to a digital system for real-time processing. Based on computer simulations, the proposed encryption technique and decoding system were demonstrated as adequate for optical security applications.

  • PDF

Optical encryption system using phase-encoded virtual image (가상 위상 영상을 이용한 광학적 암호화 시스템)

  • 서동환;신창목;김수중;배장근;김철수;도양회
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.249-254
    • /
    • 2003
  • In this paper, we propose an improved image encryption and decryption method using a phase-encoded virtual image and interference. An original image is simply decrypted by interfering a reference wave with the wave passing through a decrypting key and the encrypted image, where every image has grey level. The proposed encryption is performed by the multiplication of an encrypting key and a phase-encoded virtual image which dose not contain any information for the original image. Therefore even if unauthorized people analyze the encrypted image, they cannot reconstruct the original image. Also grey image encryption can improve the encryption level compared to binary image encryption. Computer simulation and optical experiments confirmed that the proposed technique is a simple for optical encryption.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

An Improved Pseudorandom Sequence Generator and its Application to Image Encryption

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1307-1329
    • /
    • 2022
  • This paper proposes an improved Pseudorandom Sequence Generator (PRSG) based on the concept of modular arithmetic systems with non-integral numbers. The generated random sequence use in various cryptographic applications due to its unpredictability. Here the mathematical model is designed to solve the problem of the non-uniform distribution of the sequences. In addition, PRSG has passed the standard statistical and empirical tests, which shows that the proposed generator has good statistical characteristics. Finally, image encryption has been performed based on the sort-index method and diffusion processing to obtain the encrypted image. After a thorough evaluation of encryption performance, there has been no direct association between the original and encrypted images. The results show that the proposed PRSG has good statistical characteristics and security performance in cryptographic applications.

A novel framework for the construction of cryptographically secure S-boxes

  • Razi Arshad;Mudassir Jalil;Muzamal Hussain;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • In symmetric cryptography, a cryptographically secure Substitution-Box (S-Box) is a key component of a block cipher. S-Box adds a confusion layer in block ciphers that provide resistance against well-known attacks. The generation of a cryptographically secure S-Box depends upon its generation mechanism. In this paper, we propose a novel framework for the construction of cryptographically secure S-Boxes. This framework uses a combination of linear fractional transformation and permutation functions. S-Boxes security is analyzed against well-known security criteria that include nonlinearity, bijectiveness, strict avalanche and bits independence criteria, linear and differential approximation probability. The S-Boxes can be used in the encryption of any grayscale digital images. The encrypted images are analyzed against well-known image analysis criteria that include pixel changing rates, correlation, entropy, and average change of intensity. The analysis of the encrypted image shows that our image encryption scheme is secure.