• Title/Summary/Keyword: Encrypted Data

Search Result 386, Processing Time 0.037 seconds

Key Management Server Design for Providing Cryptographic Service in Cloud Computing Environment (Services in a Cloud Environment)

  • Jung, Ki Hyun;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.26-31
    • /
    • 2016
  • In a cloud computing environment, a cryptographic service allows an information owner to encrypt the information and send it to a cloud server as well as to receive and decode encrypted data from the server which guarantees the confidentiality of shared information. However, if an attacker gains a coded data and has access to an encryption key via cloud server, then the server will be unable to prevent data leaks by a cloud service provider. In this paper, we proposed a key management server which does not allow an attacker to access to a coded key of the owners and prevents data leaks by a cloud service provider. A key management server provides a service where a server receives a coded public key of an information user from an owner and delivers a coded key to a user. Using a key management server proposed in this paper, we validated that the server can secure the confidentiality of an encryption key of data owners and efficiently distribute keys to data users.

AES Encryption Algorithm for safe PACS data Transmission in the Cloud Environment (클라우드 환경에서 안전한 PACS 데이터 전송을 위한 AES 암호화 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee;Lee, Sang-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.759-762
    • /
    • 2017
  • The proposed scheme is proposed secure transmission of fixed data and unstructured data among medical information transmitted in PACS. Unstructured data uses the AES encryption algorithm as sensitive data And transmitted using encrypted mosaic encryption techniques for the non-identification of medical images, which are regular data. In addition, we have experimented with increasing the key size for encryption. As a result, we did not notice any significant difference between 128 - bit size and 128 - key size even when encrypting the size of 196,256.

  • PDF

A Study on the TCP Supporting Optional Encryption (선택적인 암호화를 지원하는 TCP에 관한 연구)

  • Seong, Jeong-gi;Seo, Hye-in;Kim, Eun-gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.565-568
    • /
    • 2017
  • The security protocols such as SSH and SSL/TLS operate over TCP and encrypt all data from the application layer. However, this method has unnecessary performance degradation because it encrypts even data which does not require confidentiality. In this paper, we propose TCP OENC(TCP Optional Encryption) which optionally encrypts only confidential data by the application user. The proposed TCP OENC is in accordance with TCP standard operation, and it operates if application user demand on encrypting data. Before the TCP OENC sends first encrypted data, performs the key agreement, and then encrypts and sends data which application user is desired by using shared key obtained from the key agreement.

  • PDF

Design and Implementation of a Peer-to-Peer Data Sharing Scheme for Closed User Group with Security and Flexibility (보안성과 유연성을 갖춘 Peer-to-Peer 데이터 공유 기법의 설계 및 구현)

  • Lee Goo-Yeon;Lee Yong;Kim Hwa-Jong;Jeong Choong-Kyo;Lee Dong-Eun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.61-70
    • /
    • 2005
  • We propose and implement a flexible secure peer-to-peer(P2P) file sharing scheme which can be used for data sharing among closed user group (CUG) members. When a member wants to share data, notification messages are sent to the members with whom the member wants to share data. Each notification message includes one-time password encrypted with the receiver's public key. A member who received the notification message can download the data by using the one-time password. The proposed scheme provides selective sharing, download confirmation and efficient storage management. In terms of security, the proposed scheme supports authentication, entity privacy, replay attack protection and disguise prevention. We also implement the proposed system and find that the system is very useful among P2P service of closed user groups.

Similarity measurement based on Min-Hash for Preserving Privacy

  • Cha, Hyun-Jong;Yang, Ho-Kyung;Song, You-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.240-245
    • /
    • 2022
  • Because of the importance of the information, encryption algorithms are heavily used. Raw data is encrypted and secure, but problems arise when the key for decryption is exposed. In particular, large-scale Internet sites such as Facebook and Amazon suffer serious damage when user data is exposed. Recently, research into a new fourth-generation encryption technology that can protect user-related data without the use of a key required for encryption is attracting attention. Also, data clustering technology using encryption is attracting attention. In this paper, we try to reduce key exposure by using homomorphic encryption. In addition, we want to maintain privacy through similarity measurement. Additionally, holistic similarity measurements are time-consuming and expensive as the data size and scope increases. Therefore, Min-Hash has been studied to efficiently estimate the similarity between two signatures Methods of measuring similarity that have been studied in the past are time-consuming and expensive as the size and area of data increases. However, Min-Hash allowed us to efficiently infer the similarity between the two sets. Min-Hash is widely used for anti-plagiarism, graph and image analysis, and genetic analysis. Therefore, this paper reports privacy using homomorphic encryption and presents a model for efficient similarity measurement using Min-Hash.

Enhancing Data Protection in Digital Communication: A Novel Method of Combining Steganography and Encryption

  • Khaled H. Abuhmaidan;Marwan A. Al-Share;Abdallah M. Abualkishik;Ahmad Kayed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1619-1637
    • /
    • 2024
  • In today's highly digitized landscape, securing digital communication is paramount due to threats like hacking, unauthorized data access, and network policy violations. The response to these challenges has been the development of cryptography applications, though many existing techniques face issues of complexity, efficiency, and limitations. Notably, sophisticated intruders can easily discern encrypted data during transmission, casting doubt on overall security. In contrast to encryption, steganography offers the unique advantage of concealing data without easy detection, although it, too, grapples with challenges. The primary hurdles in image steganography revolve around the quality and payload capacity of the cover image, which are persistently compromised. This article introduces a pioneering approach that integrates image steganography and encryption, presenting the BitPatternStego method. This novel technique addresses prevalent issues in image steganography, such as stego-image quality and payload, by concealing secret data within image pixels with identical bit patterns as their characters. Consequently, concerns regarding the quality and payload capacity of steganographic images become obsolete. Moreover, the BitPatternStego method boasts the capability to generate millions of keys for the same secret message, offering a robust and versatile solution to the evolving landscape of digital security challenges.

Asymmetric Watermarking Using Public Key Infrastructure (공개키 기반 구조를 이용한 비대칭 워터마킹)

  • Jun Young-Min;Yang Sun-Ouk;Kim Gye-Young
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1282-1293
    • /
    • 2004
  • This paper proposes an asymmetric watermarking system using Public Key Infrastructure. The distinguishing characteristic of the proposed method connects between the two different techniques, cryptography technique and watermarking technique, by using the authentication technique. The connection between the two techniques are established based on the special qualities of each technique. Watermarks that are inserted into the digital contents consist of a digital signature described as an encrypted copyright information with the private key of a distributor or a copyright holder, and an authentication code. In the situation where the ownership of the digital contents has to be decided, authentication technique examines the data integrity of the digital contents based on an authentication and decides the ownership of the digital contents by examining whether it satisfies or not satisfies the integrity test. The formal case uses decryption method which compares the user defined copyright information, and the decrypted copyright information extracted from the watermark in the digital contents that are decrypted by distributors' public key The latter case determines the ownership by comparing the similarity between encrypted copyright information separated from the watermark that are extracted from the digital contents, and the user defined encrypted copyright information that are separated from the watermark The proposed method provides protection from the assault which attempts to identify or erase the encoding key.

  • PDF

Ciphering Scheme and Hardware Implementation for MPEG-based Image/Video Security (DCT-기반 영상/비디오 보안을 위한 암호화 기법 및 하드웨어 구현)

  • Park Sung-Ho;Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.27-36
    • /
    • 2005
  • This thesis proposed an effective encryption method for the DCT-based image/video contents and made it possible to operate in a high speed by implementing it as an optimized hardware. By considering the increase in the amount of the calculation in the image/video compression, reconstruction and encryption, an partial encryption was performed, in which only the important information (DC and DPCM coefficients) were selected as the data to be encrypted. As the result, the encryption cost decreased when all the original image was encrypted. As the encryption algorithm one of the multi-mode AES, DES, or SEED can be used. The proposed encryption method was implemented in software to be experimented with TM-5 for about 1,000 test images. From the result, it was verified that to induce the original image from the encrypted one is not possible. At that situation, the decrease in compression ratio was only $1.6\%$. The hardware encryption system implemented in Verilog-HDL was synthesized to find the gate-level circuit in the SynopsysTM design compiler with the Hynix $0.25{\mu}m$ CMOS Phantom-cell library. Timing simulation was performed by Verilog-XL from CadenceTM, which resulted in the stable operation in the frequency above 100MHz. Accordingly, the proposed encryption method and the implemented hardware are expected to be effectively used as a good solution for the end-to-end security which is considered as one of the important problems.

Optical Encryption using a Random Phase Image and Shift Position in Joint Transform Correlation Plane (결합 변환 상관 평면의 이동 변위와 무작위 위상 영상을 이용한 광 암호화 시스템)

  • Shin, Chang-Mok;Lee, Woo-Hyuk;Cho, Kyu-Bo;Kim, Soo-Joong;Seo, Dong-Hoan;Lee, Sung-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.248-255
    • /
    • 2006
  • Most optical security systems use a 4-f correlator, Mach-Zehnder interferometer, or a joint transform correlator(JTC). Of them, the JTC does not require an accurate optical alignment and has a good potential for real-time processing. In this paper, we propose an image encryption system using a position shift property of the JTC in the Fourier domain and a random phase image. Our encryption system uses two keys: one key is a random phase mask and the other key is a position shift factor. By using two keys, the proposed method can increase the security level of the encryption system. An encrypted image is produced by the Fourier transform for the multiplication image, which resulted from adding position shift functions to an original image, with a random phase mask. The random phase mask and position shift value are used as keys in decryption, simultaneously. For the decryption, both the encrypted image and the key image should be correctly located on the JTC. If the incorrect position shift value or the incorrect key image is used in decryption, the original information can not be obtained. To demonstrate the efficiency of the proposed system, computer simulation is performed. By analyzing the simulation results in the case of blocking of the encrypted image and affecting of the phase noise, we confirmed that the proposed method has a good tolerance to data loss. These results show that our system is very useful for the optical certification system.

Scrambling Technology using Scalable Encryption in SVC (SVC에서 스케일러블 암호화를 이용한 스크램블링 기술)

  • Kwon, Goo-Rak
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • With widespread use of the Internet and improvements in streaming media and compression technology, digital music, video, and image can be distributed instantaneously across the Internet to end-users. However, most conventional Digital Right Management are often not secure and not fast enough to process the vast amount of data generated by the multimedia applications to meet the real-time constraints. The SVC offers temporal, spatial, and SNR scalability to varying network bandwidth and different application needs. Meanwhile, for many multimedia services, security is an important component to restrict unauthorized content access and distribution. This suggests the need for new cryptography system implementations that can operate at SVC. In this paper, we propose a new scrambling encryption for reserving the characteristic of scalability in MPEG4-SVC. In the base layer, the proposed algorithm is applied and performed the selective scambling. And it encrypts various MVS and intra-mode scrambling in the enhancement layer. In the decryption, it decrypts each encrypted layers by using another encrypted keys. Throughout the experimental results, the proposed algorithms have low complexity in encryption and the robustness of communication errors.