• Title/Summary/Keyword: Encoders

Search Result 226, Processing Time 0.022 seconds

Design of Encoder and Decoder for LDPC Codes Using Hybrid H-Matrix

  • Lee, Chan-Ho
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.557-562
    • /
    • 2005
  • Low-density parity-check (LDPC) codes have recently emerged due to their excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and are synthesized using a $0.35 {\mu}m$ CMOS standard cell library.

  • PDF

A Study for The Parallel Processing in The Polyphase Encoder (Polyphase 인코더의 병렬 처리에 대한 연구)

  • Cho, Dong-Sik;Ra, Sung-Woong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.199-205
    • /
    • 2010
  • In this paper, we proposed a polyphase encoder that consists of multiple internal encoders. The multiple internal encoders were configured in parallel. Successive frames of image were distributed to separate encoders by way of a image divider and processed in parallel. In this way, the sampling rate of the encoder was reduced by the factor of number of encoders in parallel. In our design, however, the PSNR is exactly the same as that to be achieved with the conventional single-phase encoder, which should require a much higher sampling rate.

Implementation of CiA 406 Device Profile for CANopen Compatible Encoders (CANopen 지원 엔코더를 위한 CiA 406 장치 프로파일 구현)

  • Hwang, Hyunbum;Ahn, Hyosung;Kim, Sanghyun;Kim, Taehyoun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1287-1295
    • /
    • 2015
  • Recently, fieldbus communication technologies have been widely deployed for industrial automation because they are profitable in providing easy system integration and management for multiple devices, as well as high-speed communication. It is essential for smart encoders to support fieldbus connectivity, where the device configuration and various types of information related to position are exchanged between an external controller and multiple encoders over the communication link. In this study, we implemented the CiA 406 device profile for smart encoders from the CANopen standards by extending an open-source CANopen standard-compliant framework, called CanFestival. The CiA 406 functionalities implemented in this study were validated on a test-bed consisting of a CANopen master and virtual CANopen encoders with our CiA 406 extension module.

Detection of Absolute Position of Robot Joint Using Incremental Encoders (증분형 엔코더를 이용한 로봇 관절의 절대위치 검출)

  • Lim, Jae Sik;Lee, Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.577-582
    • /
    • 2015
  • This paper proposes an efficient detection of absolute position of a robot joint using two incremental encoders. We considers a robot joint comprising a motor, a reducer, two encoders, and a motor drive. An incremental(first) encoder provides motor's rotor position or input position of reducer while another incremental(second) encoder does output position of the reducer. A table is made where the relationship between the first and the second encoder counts is recorded. The key point is placed where the table is constructed: when a pulse occurs in the second encoder, there exists a corresponding unique count value of the first encoder. The absolute position is detected using the table by searching the second encoder position corresponding to the first encoder count value when a pulse occurs in the second encoder. The proposed method needs a small rotation, as just one second encoder's pulse angle, for the initial absolute position detection.

A New Error Compensation Method in Linear Encoder Using a Phase-Modulated Grating (위상 변환 격자를 이용한 선형 엔코더의 오차 보상법)

  • Song, Ju-Ho;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.147-154
    • /
    • 2000
  • A new hardware compensation method reducing displacement measurement errors, caused by tilt of index scale in moire linear encoders, has been developed. In conventional moire linear encoders, the detectors are aligned perpendicular to the line of moire fringes this structure is very sensitive to an unwanted tilt of the gratings. In this paper, a newly designed grating, called a phase-modulated grating, is developed to compensate for non-orthogonal errors. By using the phase-modulated grating instead of a conventional index, it is possible to reduce non-orthogonal errors of moire linear encoders.

  • PDF

A study on Generating Molecules with Variational Auto-encoders based on Graph Neural Networks (그래프 신경망 기반 가변 자동 인코더로 분자 생성에 관한 연구)

  • Cahyadi, Edward Dwijayanto;Song, Mi-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.380-382
    • /
    • 2022
  • Extracting informative representation of molecules using graph neural networks(GNNs) is crucial in AI-driven drug discovery. Recently, the graph research community has been trying to replicate the success of self supervised in natural language processing, with several successes claimed. However, we find the benefit brought by self-supervised learning on applying varitional auto-encoders can be potentially effective on molecular data.

Design of an Efficient LDPC Codec for Hardware Implementation (하드웨어 구현에 적합한 효율적인 LDPC 코덱의 설계)

  • Lee Chan-Ho;Park Jae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.50-57
    • /
    • 2006
  • Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and compared with the previous results.

Signal Compensation for Analog Rotor Position Errors due to Nonideal Sinusoidal Encoder Signals

  • Hwang, Seon-Hwan;Kim, Dong-Youn;Kim, Jang-Mok;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 2014
  • This paper proposes a compensation algorithm for the analog rotor position errors caused by nonideal sinusoidal encoder output signals including offset and gain errors. In order to achieve a much higher resolution, position sensors such as resolvers or incremental encoders can be replaced by sinusoidal encoders. In practice, however, the periodic ripples related to the analog rotor position are generated by the offset and gain errors between the sine and cosine output signals of sinusoidal encoders. In this paper, the effects of offset and gain errors are easily analyzed by applying the concept of a rotating coordinate system based on the dq transformation method. The synchronous d-axis signal component is used directly to detect the amplitude of the offset and gain errors for the proposed compensator. As a result, the offset and gain errors can be well corrected by three integrators located on the synchronous d-axis component. In addition, the proposed algorithm does not require any additional hardware and can be easily implemented by a simple integral operation. The effectiveness of the proposed algorithm is verified through several experimental results.

TCM schemes to improve the performance of 16 VSB CATV system (TCM 방식을 사용한 16VSB CATV 시스템 성능 개선에 대한 연구)

  • 이호경;조병학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.1976-1988
    • /
    • 1996
  • This paper describes TCM(trellis coded modulation) schemes using 32VSB signal for digital CATV system. First we design optimum encoder with code rate 4/5 for 32VSB by using one dimenstional signal constellation and obtain 0.75-4.38 dB coding gains over the existing uncoded 16VSB. Second by using two dimensional signal constellation we design TCM encoders with code rate 9/10, which are better in the power efficienty (0.5-2.27 dB) and the transmission rate(12.5%), and we also design TCM encoders which have more coding gains than one dimensional TCM encoders for the larger number of states(more than 8 states).

  • PDF

A Data Acquisition System based upon a Single-board Microcomputer (단일보드 마이크로 컴퓨터를 이용한 자료(資料) 수집장치(蒐集裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.221-228
    • /
    • 1989
  • A data acquisition system was designed to measure the forces on a rolling coulter in three coordinated directions, angular velocity of the coulter and travel speed of a soil bin. The data acquisition system consisted of a dynamometer, speed transducers, a signal conditioner, an inter-face board, an Aim-65 microcomputer and a digital data recorder. Strain gages were attached on the surface of the dynamometer and connected to form three Wheatstone bridges, which measure the draft force, the vertical force and the side force on the coulter. An interaction among three dimensional forces was found during the calibration. A matrix procedure was used to correct the forces for this interaction. Rotary shaft encoders were mounted on the coulter and on the soil bin drive to measure the angular velocity of the coulter and the travel speed of the soil bin. The angular velocity and the travel speed were computed by counting the number of pulse signals from the rotary shaft encoders every 0.2 second. The digital signals from the rotary shaft encoders were connected to counters and the analog signals from the dynamometer, after passing through the signal conditioner, were connected to the A/D converter. The microcomputer programs, written in assembly language, were developed to read signals from the transducers, convert them to actual unit, display them upon request and record them on a sigital tape every 0.2 second.

  • PDF