• 제목/요약/키워드: Encoder-decoder Architecture

검색결과 54건 처리시간 0.022초

회로 크기면에서 효율적인 디지털 VCR용 리드-솔로몬 디코어/인코더 구조 (An area-efficient reed-solomon decoder/encoder architecture for digital VCRs)

  • 권성훈;박동경
    • 전자공학회논문지C
    • /
    • 제34C권11호
    • /
    • pp.39-46
    • /
    • 1997
  • In this paper, we propose an area-efficient architecture of a reed-solomon (RS) decoder/encoder for digital VCRs. The new architecture of the decoder/encoder targeted to reduce the circit size and decoding latency has the following two features. First, area-efficeincy has been significantly improved by sharing a functional block for encoding, modified syndrome computation, and erasure locator polynomial evaluation. Second, modified euclid's algorithms has been implemented by using a new architecture. Experimental results have showed that the decoder/encoder designed by using the proposed method has been implemented with 25% smaller sie over straight forware implementation based on the conventional method [1] and the decoding latency has been reduced.

  • PDF

H.264/AVC를 위한 CAVLC 엔트로피 부/복호화기의 VLSI 설계 (VLSI architecture design of CAVLC entropy encoder/decoder for H.264/AVC)

  • 이대준;정용진
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.371-381
    • /
    • 2005
  • 본 논문에서는 동영상의 실시간 부/복호화를 위한 하드웨어 기반의 CAVLC 엔트로피 부/복호화기 구조를 제안한다. H.264/AVC의 무손실 압축 기법인 내용기반 가변길이 부호화(Context-based Adaptive Variable Length Coding)는 이전 표준의 기법과 다른 알고리즘을 채용하여 높은 부호화 효율과 복잡도를 가지고 있다. 이를 하드웨어 구조로 설계하기 위하여 메모리 재사용 기법을 적용하여 리소스를 최적화 하였으며, 지금까지 제시된 여러 엔트로피 부/복호화 구조 중 휴대용 기기에 적합한 성능 대비 리소스를 가지는 구조를 선택하고 이를 병렬 처리 구조로 설계하여 부호화 성능을 향상시켰다. 구현된 전체 모듈은 Altera사의 Excalibur 디바이스를 이용하여 검증하고 삼성 STD130 0.18um CMOS Cell Library를 이용하여 합성 및 검증하였다. 이를 ASIC으로 구현할 경우 부호화기는 150Mhz 동작주파수에서 CIF 크기의 동영상을 초당 300프레임 이상 처리하며 복호화기는 140Mhz 동작주파수에서 CIF 크기의 동영상을 초당 250 이상 처리할 수 있다. 본 결과는 하드웨어 기반의 H.264/AVC 실시간 부호화기와 복호화기를 설계하기에 적합한 하드웨어 구조임을 보여준다.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

피부 병변 분할을 위한 어텐션 기반 딥러닝 프레임워크 (Attention-based deep learning framework for skin lesion segmentation)

  • 아프난 가푸어;이범식
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.53-61
    • /
    • 2024
  • 본 논문은 기존 방법보다 우수한 성능을 달성하는 피부 병변 분할을 위한 새로운 M자 모양 인코더-디코더 아키텍처를 제안한다. 제안된 아키텍처는 왼쪽과 오른쪽 다리를 활용하여 다중 스케일 특징 추출을 가능하게 하고, 스킵 연결 내에서 어텐션 메커니즘을 통합하여 피부 병변 분할 성능을 더욱 향상시킨다. 입력 영상은 네 가지 다른 패치로 분할되어 입력되며 인코더-디코더 프레임워크 내에서 피부 병변 분할 성능의 향상된 처리를 가능하게 한다. 제안하는 방법에서 어텐션 메커니즘을 통해 입력 영상의 특징에 더 많은 초점을 맞추어 더욱 정교한 영상 분할 결과를 도출하는 것이다. 실험 결과는 제안된 방법의 효과를 강조하며, 기존 방법과 비교하여 우수한 정확도, 정밀도 및 Jaccard 지수를 보여준다.

뉴로모픽 구조 기반 IoT 통합 개발환경에서 SNN 모델을 지원하기 위한 인코더/디코더 구현 (Implementation of Encoder/Decoder to Support SNN Model in an IoT Integrated Development Environment based on Neuromorphic Architecture)

  • 김회남;윤영선
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.47-57
    • /
    • 2021
  • 뉴로모픽 기술은 인간의 뇌 구조와 연산과정을 하드웨어로 모방하는 기술로 기존 인공지능 기술의 단점을 보완하기 위하여 제안되었다. 뉴로모픽 하드웨어 기반의 IoT 응용을 개발하기 위해 NA-IDE가 제안되었으며, NA-IDE에서 SNN 모델을 구현하기 위하여 일반적으로 많이 사용되는 입력 데이터를 SNN모델에 사용할 수 있도록 변환이 필요하다. 본 논문에서는 이미지 데이터를 SNN 입력으로 사용하기 위하여 스파이크 시계열 패턴으로 변환하는 신경코딩 방식의 인코더 컴포넌트를 구현하였다. 디코더 컴포넌트는 SNN 모델이 스파이크 시계열 패턴을 생성하는 경우, 출력된 시계열 데이터를 다시 이미지 데이터로 변환하도록 구현하였다. 디코더 컴포넌트는 출력 데이터에 인코딩 과정과 동일한 매개변수를 사용한 경우, 원본 데이터와 유사한 정적 데이터를 얻을 수 있었다. 제안된 인코더와 디코더를 사용한다면 image-to-image나 speech-to-speech와 같이 입력 데이터를 변환하여 재생성하는 분야에 사용할 수 있을 것이다.

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측 (Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models)

  • 서장훈;윤현식;김민일
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

Time-Series Forecasting Based on Multi-Layer Attention Architecture

  • Na Wang;Xianglian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 2024
  • Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.

Low Lumination Image Enhancement with Transformer based Curve Learning

  • Yulin Cao;Chunyu Li;Guoqing Zhang;Yuhui Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2626-2641
    • /
    • 2024
  • Images taken in low lamination condition suffer from low contrast and loss of information. Low lumination image enhancement algorithms are required to improve the quality and broaden the applications of such images. In this study, we proposed a new Low lumination image enhancement architecture consisting of a transformer-based curve learning and an encoder-decoder-based texture enhancer. Considering the high effectiveness of curve matching, we constructed a transformer-based network to estimate the learnable curve for pixel mapping. Curve estimation requires global relationships that can be extracted through the transformer framework. To further improve the texture detail, we introduced an encoder-decoder network to extract local features and suppress the noise. Experiments on LOL and SID datasets showed that the proposed method not only has competitive performance compared to state-of-the-art techniques but also has great efficiency.

컴팩트 디스크를 위한 Reed Solomon 부호기/복호기 설계 (Design of Reed Solomon Encoder/Decoder for Compact Disks)

  • 김창훈;박성모
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.281-284
    • /
    • 2000
  • This paper describes design of a (32, 28) Reed Solomon decoder for optical compact disk with double error detecting and correcting capability. A variety of error correction codes(ECCs) have been used in magnetic recordings, and optical recordings. Among the various types of ECCs, Reed Solomon(RS) codes has emerged as one the most important ones. The most complex circuit in the RS decoder is the part for finding the error location numbers by solving error location polynomial, and the circuit has great influence on overall decoder complexity. We use RAM based architecture with Euclid's algorithm, Chien search algorithm and Forney algorithm. We have developed VHDL model and peformed logic synthesis using the SYNOPSYS CAD tool. The total umber of gate is about 11,000 gates.

  • PDF