• 제목/요약/키워드: Enclosed-layout transistors (ELTs)

검색결과 2건 처리시간 0.019초

저온 중수소 어닐링을 활용한 Enclosed-Layout Transistors (ELTs) 소자의 제작 및 전기적 특성분석 (Fabrication of Enclosed-Layout Transistors (ELTs) Through Low-Temperature Deuterium Annealing and Their Electrical Characterizations)

  • 왕동현;김동호;길태현;연지영;김용식;박준영
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.43-47
    • /
    • 2024
  • The size of semiconductor devices has been scaled down to improve packing density and output performance. However, there is uncontrollable spreading of the dopants that comprise the well, punch-stop, and channel-stop when using high-temperature annealing processes, such as rapid thermal annealing (RTA). In this context, low-temperature deuterium annealing (LTDA) performed at a low temperature of 300℃ is proposed to reduce the thermal budget during CMOS fabrication. The LTDA effectively eliminates the interface trap in the gate dielectric layer, thereby improving the electrical characteristics of devices, such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), and off-state current (IOFF). Moreover, the LTDA is perfectly compatible with CMOS processes.

저온 열처리를 통한 MOSFETs 소자의 방사선 손상 복구 (Recovery of Radiation-Induced Damage in MOSFETs Using Low-Temperature Heat Treatment)

  • 박효준;길태현;연주원;이문권;윤의철;박준영
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.507-511
    • /
    • 2024
  • Various process modifications have been used to minimize SiO2 gate oxide aging in metal-oxide-semiconductor field-effect transistors (MOSFETs). In particular, post-metallization annealing (PMA) with a deuterium ambient can effectively eliminate both bulk traps and interface traps in the gate oxide. However, even with the use of PMA, it remains difficult to prevent high levels of radiation-induced gate oxide damage such as total ionizing dose (TID) during long-term missions. In this context, additional low-temperature heat treatment (LTHT) is proposed to recover from radiation-induced damage. Positive traps in the damaged gate oxide can be neutralized using LTHT, thereby prolonging device reliability in harsh radioactive environments.