• Title/Summary/Keyword: Encapsulation-vitrification

Search Result 8, Processing Time 0.027 seconds

Cryopreservation of in Vitro Grown Shoot Tips of Sweet Potato (Ipomoea batatas L.) by the Encapsulation-Vitrification Method

  • Yi, JungYoon;Lee, GiAn;Lee, YoungYi;Gwag, JaeGyun;Son, EunHo;Park, HongJae
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Sweet potato (Ipomoea batatas L.) shoot tips grown in vitro were successfully cryopreserved by encapsulation-vitrification. Encapsulated explants are very easily manipulated, due to the relatively large size of the alginate beads, and a large number of samples can be treated simultaneously. In this study, the effects of sucrose preculture, cryoprotectant preculture, and post-warm recovery media on regrowth, following liquid nitrogen (LN) exposure, were investigated to establish an efficient encapsulation-vitrification protocol for sweet potato. Shoot tips of plants grown in vitro were precultured in 0.3 M sucrose for 2 d before encapsulation. Encapsulated shoot tips were pre-incubated in liquid MS (Murashige and Skoog) medium containing 0.5 M sucrose for 16 h, before preculturing in sucrose-enriched medium (0.7 M sucrose) for 8 h. Shoot tips were osmoprotected with 35% plant vitrification solution 3 (PVS3) for 3 h, before being dehydrated with PVS3 for 2 h at $25^{\circ}C$. The encapsulated and dehydrated shoot tips were transferred to 2 mL cryotubes, suspended in 0.5 mL PVS3, and plunged directly into liquid N. High levels of shoot formation were obtained for the cv. Yeulmi (65.7%) and Yeonwhangmi (80.3%). The regrowth rates of cryopreserved samples in Yeulmi (78.9%) and Yeonwhangmi (91.3%), following culture on ammonium-free MS medium for 5 d, were much higher than those cultured on standard MS medium (65.7% and 80.3%, respectively). This encapsulation-vitrification is a promising method for the long-term preservation of sweet potato.

Cryopreservation of Hevea brasiliensis zygotic embryos by vitrification and encapsulation-dehydration

  • Nakkanong, Korakot;Nualsri, Charassri
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.333-339
    • /
    • 2018
  • The mature zygotic embryos of the Hevea brasiliensis were cryopreserved through the use of the vitrification and encapsulation/dehydration techniques. In all the experiments, the zygotic embryos were pre-cultured for three days in the MS medium supplemented with 0.3 M sucrose before they were used for the cryopreservation technique. In the vitrification procedure, the effect of the plant vitrification solutions (PVS2 and PVS3) and exposure time were studied. The highest survival rate (88.87%) and regrowth (66.33%) were achieved when the precultured zygotic embryos were incubated in a loading solution for 20 minutes at $0^{\circ}C$. They were subsequently exposed to PVS2 for 120 minutes at $0^{\circ}C$ and plunged directly into liquid nitrogen. Cryopreservation by the encapsulation-dehydration method was successfully done by leaving the encapsulated zygotic embryos in a laminar flow for 4 hours prior to plunging into a LN. The survival rate and regrowth of the encapsulated zygotic embryos were 37.50% and 27.98%, respectively. The cryopreserved zygotic embryos were able to develop into whole plants.

Optimization Conditions for Cryopreservation of Deutzia paniculata Nakai, Endangered Plant

  • Seol, Yuwon;Yong, Seong Hyeon;Choi, Eunji;Jeong, Mi Jin;Suh, Gang Uk;Lee, Cheul Ho;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.4
    • /
    • pp.274-280
    • /
    • 2020
  • As the importance of biological resources increases, the conservation technology is becoming important for rarities. This study was conducted to establish an efficient cryopreservation conditions for the Deutzia paniculata, endangered plant species, by using both cryopreservation methods of vitrification and encapsulation. As a result, the sucrose pretreatment seed viability showed up to 30.7% in the treatments. The cryoprotectant treatment improved the viability of the seeds, and was found to be excellent in the vitrification method using PVS3. The vitrification method had over 10% higher germination rate than the seeds preserved by encapsulation. In addition, the germination rate showed a significant difference according to the cryopreservation treatment time, and the germination rate of seeds decreased very much as the long time became longer. Plants germinated from preserved seed in liquid nitrogen showed poor growth compared to untreated, and good growth in PVS3 120 minutes. In addition, the growth of germinated plants by liquid nitrogen treatment time was better in the vitrification method. These results are expected to be useful for long-term preservation of D. paniculata, endangered plants.

Studies on Proper Medium for Somatic Embryogenesis in Suspension Culture of Rehmania glutinosa and Encapsulation of Somatic Embryos (지황의 현탁배양에서 체세포배 형성에 관여하는 요인분석과 체세포배의 Encapsulation)

  • Park, Ju-Hyun;Park, Sang-Un;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.100-106
    • /
    • 1995
  • This study was conducted to find the factors affecting somatic embryogenesis in suspension culture of Rehmania glutinosa and investigate the possibility of artificial seed production by encapsulation of somatic embryos. Linsmeier-Skoog medium was appeared as proper for somatic embryogenesis. Sucrose with $3{\sim}5%$ as carbon sources was good for somatic embryogenesis, and both ammonium and nitrate nitrogen were necesary for normal somatic embryo production. BA with NAA or kinetin with NAA were better than the use of cytokinin alone for both somatic embryogenesis and numbers of somatic embryos. $AgNO_3$ as protectant for vitrification of seedlings in vitro culture had no harmful effect on somatic embryos. Sphericity of encapsulated seeds was good at 3% gel of sodium alginate but germination was better at 2.5% sodium alginate level. Artificial seeds were germinated and developed normal shoots and roots under in vitro condition.

  • PDF

Cryopreservation of Chrysanthemum morifolium cv. 'White ND' Shoot Tips using Encapsulation-Dehydration-Vitrification Method (캡슐화-탈수화-유리화에 의한 국화 품종 '화이트 엔디' 신초의 초저온 동결보존)

  • Jeon, Su Min;Kim, Chang Kil
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.99-103
    • /
    • 2014
  • This study investigated the effects of cryopreserving Chrysanthemum morifolium cv. 'White ND' shoot tips for eliminating viroids. As a result, smaller shoot tips (2-3 LP, 1mm) showed a better survival and regrowth than larger shoot tips (4-5 LP, 1.5mm). The most effective vitrification solution for survival and regrowth was PVS3, which induced a high survival rate after 60 minutes of incubation. For a high efficiency, the best pre-treatment condition for vitrification was incubation in 88 mM sucrose for 24 h, 0.3M sucrose for 16 h, 0.5 M sucrose for 6 h, and 0.7 M sucrose for 3 h, in a descending order. The ploidy levels were the same in the mother plants and following cryopreservation, which confirmed the absence of any gene mutation.

Optimization Conditions for Cryopreservation of Potentilla discolor Bunge (솜양지꽃(Potentilla discolor Bunge)의 초저온동결보존을 위한 최적 조건 탐색)

  • Yang, Woo Hyeong;Yong, Seong Hyeon;Park, Dongjin;Seol, Yuwon;Choi, Eunji;Jeong, Mi Jin;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.258-265
    • /
    • 2018
  • This study was conducted to investigate the effective cryopreservation condition of Potentilla discolor Bunge, a rare native plant. Seed viability was more than 80% in PVS2 and PVS3 solution treatments. Seed viability was higher in PVS3 than PVS2 treatment. Seed viability was lower than control in spite of sucrose pretreatment. The germination rate was 95% at 60 min of PVS2 treatment and 30 min of PVS3 treatment but the germination rate was low at other treatments. The growth of the seedling wasn't doing that of the control except for treat PVS2 and PVS3 solution for 30 min. There was no statistically significant difference between the encapsulation method and the vitrification method in the seedling growth between the two cryogenic storage methods. This study is expected to be applied to future conservation methods of Potentilla discolor.

Influence of hydrogel encapsulation during cryopreservation of ovarian tissues and impact of post-thawing in vitro culture systems in a research animal model

  • Thuwanut, Paweena;Comizzoli, Pierre;Pimpin, Alongkorn;Srituravanich, Weerayut;Sereepapong, Wisan;Pruksananonda, Kamthorn;Taweepolcharoen, Charoen;Tuntiviriyapun, Punkavee;Suebthawinkul, Chanakarn;Sirayapiwat, Porntip
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.111-123
    • /
    • 2021
  • Objective: Using domestic cats as a biomedical research model for fertility preservation, the present study aimed to characterize the influences of ovarian tissue encapsulation in biodegradable hydrogel matrix (fibrinogen/thrombin) on resilience to cryopreservation, and static versus non-static culture systems following ovarian tissue encapsulation and cryopreservation on follicle quality. Methods: In experiment I, ovarian tissues (n=21 animals; 567 ovarian fragments) were assigned to controls or hydrogel encapsulation with 5 or 10 mg/mL fibrinogen (5 or 10 FG). Following cryopreservation (slow freezing or vitrification), follicle viability, morphology, density, and key protein phosphorylation were assessed. In experiment II (based on the findings from experiment I), ovarian tissues (n=10 animals; 270 ovarian fragments) were encapsulated with 10 FG, cryopreserved, and in vitro cultured under static or non-static systems for 7 days followed by similar follicle quality assessments. Results: In experiment I, the combination of 10 FG encapsulation/slow freezing led to greater post-thawed follicle quality than in the control group, as shown by follicle viability (66.9%±2.2% vs. 61.5%±3.1%), normal follicle morphology (62.2% ±2.1% vs. 55.2%±3.5%), and the relative band intensity of vascular endothelial growth factor protein phosphorylation (0.58±0.06 vs. 0.42±0.09). Experiment II demonstrated that hydrogel encapsulation promoted follicle survival and maintenance of follicle development regardless of the culture system when compared to fresh controls. Conclusion: These results provide a better understanding of the role of hydrogel encapsulation and culture systems in ovarian tissue cryopreservation and follicle quality outcomes using an animal model, paving the way for optimized approaches to human fertility preservation.

Eliminating Potato Virus Y (PVY) and Potato Leaf Roll Virus (PLRV) Using Cryotherapy of in vitro-grown Potato Shoot Tips

  • Yi, Jung-Yoon;Lee, Gi-An;Jeong, Jong-Wook;Lee, Sok-Young;Lee, Young-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Potato virus Y (PVY) and potato leafroll virus (PLRV) are among the most damaging potato viruses and prevalent in most potato growing areas. In this study, cryopreservation was used to eradicate PVY and PLRV using two cryogenic methods. Potato shoot tips proliferated in vitro were cryopreserved through droplet-vitrification and encapsulation-vitrification using plant vitrification solution 2 (PVS2; 30% glycerol + 15% dimethyl sulfoxide + 15.0% ethylene glycol + 13.7% sucrose) and modified PVS2. Both cryogenic procedures produced similar rates of survival and regrowth, which were lower than those from shoot tip culture alone. The health status of plantlets regenerated from shoot tip culture alone and cryopreservation was checked by reverse transcription-polymerase chain reaction. The frequency of virus-free plants regenerated directly from highly proliferating shoot tips reached 42.3% and 48.6% for PVY and PLRV, respectively. In comparison, the frequency of PVY and PLRV eradication after cryopreservation was 91.3~99.7% following shoot-tip culture. The highest cryopreserved shoot tip regeneration rate was observed when shoot tips were 1.0~1.5 mm in length, but virus eradication rates were very similar (96.4~99.7%), regardless of shoot tip size. This efficient cryotherapy protocol developed to eliminate viruses can also be used to prepare potato material for safe long-term preservation and the production of virus-free plants.