• Title/Summary/Keyword: Emulsions

Search Result 352, Processing Time 0.025 seconds

Relationship between Emulsion Stability Index and HLB Value of Emulsifier in the Analysis of W/O Emulsion Stability (W/O형 유화계의 유화안정성 분석에 있어서의 유화안정지수와 HLB값과의 관계 규명)

  • Chang, Pahn Shick;Shin, Myung Gon;Lee, Won Myo
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.237-243
    • /
    • 1994
  • The stability of W/O emulsions (milk fat : water=4 : 1, w/w) containing various emulsifiers was compared to determine the effect of different chemical types of emulsifiers in relation to the change of HLB value caused by emulsifier type and the influence of single vs. binary emulsifier systems. These variables were compared at emulsifier HLB values of 0.5~16.7 and at emulsifier concentrations of 1.0~3.0%(w/w). Eleven emulsifiers used as 11 different single mixtures and 16 different binary mixtures were evaluated in W/O type emulsion systems containing 20.0%(w/w) of water in milk fat. This W/O emulsion was stable (more than 90.0 of ESI value) in the range of low value of emulsifier HLB (less than 4.7 of HLB value). All the ESI values of binary emulsifier systems were higher than those of single emulsifier systems. But, the influence pattern of emulsifier HLB on this emulsion stability in single emulsifier systems was very similar to the trend in binary emulsifier systems.

  • PDF

Physicochemical Properties of Whey Protein Isolate (WPI의 물리화학적 특성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.50-54
    • /
    • 2007
  • In this study, the physicochemical properties of cheese whey protein isolate (WPI) were measured. The total amount of amino acids in WPI was 89.5% and the proportion of essential amino acids was 44.6%. Among these, leucine, lysine, isoleucine, and valine were shown in large amounts. At various pHs, the solubility of WPI (82-88%) was higher than that of sodium caseinate, (5-79%). The solubility of WPI was not affected by variation of pH. It was shown that the emulsifying capacity of WPI was higher than that of egg yolk by 1.6 times, but the stabilities of emulsions made with WPI and egg yolk was almost same each other at 65-97% and 60-89%, respectively. The foaming capacity of WPI was higher than that of egg white, at 323.3% and 186.6%, respectively, but the foam stability of WPI was similar to that of egg white.

Patterns of Protein Leaching to Dispersion Medium during W/O/W Double Emulsion-Based Microencapsulation Processes (이중유제법에 근거한 미립자 제조 공정 중 단백질의 분산매로의 전이 양상)

  • Cho, Mi-Hyun;Choi, Soo-Kyoung;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.369-377
    • /
    • 2004
  • The objective of this study was to investigate the patterns of protein leaching to an external phase during an ethyl acetate-based, double emulsion microencapsulation process. An aqueous protein solution (lactoglobulin, lysozyme, or ribonuclease; $W_1$) was emulsified in ethyl acetate containing poly-d,l-lactide-co-glycolide 75:25. The $W_1/O$ emulsion was transferred to a 0.5% polyvinyl alcohol solution saturated with ethyl acetate $(W_2)$. After the double emulsion was stirred for 5, 15, 30, or 45 min, additional 0.5% polyvinyl alcohol $(W_3)$ was quickly added into the emulsion. This so-called quenching step helped convert emulsion microdroplets into microspheres. After 2-hr stirring, microspheres were collected and dried. The degree of protein leaching to $W_2$ and/or $W_3$ phase was monitored during the microencapsulation process. In a separate, comparative experiment, the profile of protein leaching to an external phase was investigated during the conventional methylene chloride-based microencapsulation process. When ethyl acetate was used as a dispersed solvent, proteins continued diffusing to the $W_2$ phase, as stirring went on. Therefore, the timing of ethyl acetate quenching played an important role in determining the degree of protein microencapsulation efficiency. For example, when quenching was peformed after 5-min stirring of the primary $W_1/O$ emulsion, the encapsulation efficiencies of lactoglobulin and ribonuclease were $55.1{\pm}4.2\;and\;45.3{\pm}7.6%$, respectively. In contrast, when quenching was carried out in 45 min, their respective encapsulation efficiencies were $39.6{\pm}3.2\;and\;29.9{\pm}11.2%$. By sharp contrast, different results were attained with the methylene-chloride based process: up to 2 hr-stirring of the primary and double emulsions, less than 5% of a protein appeared in $W_2$. Afterwards, it started to partition from $W_1\;to\;W_2/W_3$, and such a tendency was affected by the amount of PLGA75:25 used to make microspheres. Different solvent properties (e.g., water miscibility) and their effect on microsphere hardening were to be held answerable for such marked differences observed with the two microencapsulation processes.

Improvement of Bioavailability for Lovastatin using Self-microemulsifying Drug Delivery System (미세유화약물송달시스템을 이용한 로바스타틴의 생체이용률 향상)

  • Yoon, Bok-Young;Kang, Bok-Ki;Jeung, Sang-Young;Lee, Young-Won;Lee, Si-Beum;Hwang, Sung-Joo;Yuk, Soon-Hong;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.267-275
    • /
    • 2002
  • A self-microemulsifying drug delivery system (SMEDDS) was developed to increase the dissolution rate, solubility, and ultimately bioavailability of a poorly water soluble drug, lovastatin. SMEDDS was thε mixtures of oils, surfactants, and cosurfactants, which emulsify under conditions of gentle agitation, similar to those which would be encountered in the gastro-intestinal (GI) tract. Various types of self-emulsifying formulations were prepared using four types of oil (Capryol 90, Lauroglycol 90, Labrafil M 1944 CS and Labrafil M 2125), two surfactants (Cremophor EL and Tween 80), and three cosurfactants (Carbitol, PEG 400 and propylene glycol). Thε efficiency of emulsification was studied using a laser diffraction size analyzer to determine particle size distributions of the resultant emulsions. Optimized formulations selected for bioavailability assessment were Carpryol 90 (40%), Cremophor EL (30%) and Carbitol (30%). SMEDDS containing lovastatin (20 mg and 5 mg) were compared to a conventional lovastatin tablet $(Mevacor^{\circledR},\;20\;mg/tab)$ by the oral administration as prefilled hard gelatin capsules to fasted beagle dogs for in vivo study. The arεa under the serum concentration-time curve from time zero to the last measured time in serum, $AUC_{0{\rightarrow}24h}$, was significantly greater in SMEDDS, suggesting that bioavailability increase 130% and 192% by the SMEDDS, respectively. The self-emulsifying formulations of lovastatin afforded the improvement in absolute oral bioavailability relative to previous data of lovastatin tablet formulation. These data indicate the utility of dispersed self-emulsifying formulations for the oral delivery of lovastatin and potentially other poorly absorbed drugs.

Development of Self-microemulsifying Drug Delivery System for Enhancing the Bioavailability of Atorvastatin

  • Jin, Shun-Ji;Cho, Won-Kyung;Park, Hee-Jun;Cha, Kwang-Ho;Park, Jun-Sung;Koo, Ja-Seong;Wang, Hun-Sik;Kim, Jeong-Soo;Kim, Min-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The objective of the study was to prepare self-microeulsifying drug delivery system (SMEDDS) incorporating atorvastatin calcium and evaluate its properties and oral bioavailability. Solubility of atorvastatin in various vehicles was determined. Pseudo-ternary phase diagrams were constructed to identify the good self-emulsification region. The droplet size distributions of the resultant emulsions were determined by dynamic light scattering measurement. The mean droplet size of chosen formulation (20% ethyl oleate, 40% tween-80, 40% Carbitol$^{(R)}$) was $23.4{\pm}1.3$ nm. The SMEDDS incorporating atorvastatin calcium appeared to be associated with better performance in dissolution and pharmacokinetic studies, compared with raw atorvastatin calcium. In dissolution test, the release percentage of atorvastatin from SMEDDS mixture could rapidly reach more than 95% within 3 min. Oral $AUC_{0{\rightarrow}8hr}$ values in SD rats was $1994{\pm}335\;ng{\cdot}hr/mL$, which significantly increased (P<0.05) compared with raw atorvastatin calcium. The SMEDDS formulation was relatively stable when stored at $4^{\circ}C$ during 3 months. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as atorvastatin, by the oral route.

A Study on the Antioxidative Effects of Zostera marina and its Application in Cosmatics (잘피(Zostera marina)의 항산화 효능과 화장품 응용에 관한 연구)

  • Lee, So-Yeon;Yang, Jae-Chan;Kim, Bo-Ae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.534-544
    • /
    • 2017
  • In order to use the sea flowering plant, Zostera marina, as a cosmetic ingredient, this study was conducted to evaluate its antioxidant effect. We confirmed the formulation stability of the emulsion containing Zostera marina extracts. We studied the antioxidant activity of the dissolved Zostera marina extracts through the DPPH (1,1-Diphenyl-2-picrylhydrazy) radical scavenging activity assay and SOD (superoxide dismutase)-like activity assay. Also, the pH, viscosity and particle dispersion of the emulsion containing Zostera marina extracts were measured using a Turbiscan LAB. The emulsions were measured at one-week intervals in a thermostat chamber ($25^{\circ}C{\pm}1^{\circ}C$, $40^{\circ}C{\pm}1^{\circ}C$) for 28 days. The extracts of Zostera marina showed a DPPH radical scavenging rate of 86.21% and SOD-like activity of 99.24% at 5.00 mg/ml and exhibited a dose-dependent increase in their antioxidant activity. We measured the stability of the pH, viscosity and emulsion particles using the Turbiscan LAB in a thermostat chamber for 28 days. The formulations to which the Zostera marina extracts were added were considered to be stable, due to their negligible physical property changes over time during storage. The results suggest that the Zostera marina extracts with 70% ethanol (v/v) could be used in cosmetics as an antioxidant for the anti-aging of skin.

Development of the Novel Cosmetics Impregnation Material and Study on Makeup W/O Emulsions using It (새로운 화장료 함침재의 개발과 이를 활용한 메이크업 유중수형 에멀전에 관한 연구)

  • Kang, Sungsoo;Kim, Hyeon Jeong;Oh, Se Woong;Park, Sang Wook;Kim, Kyung Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • Up to now, better convenience and portability were important factors in the development of the cosmetics and achieved by immersing low viscosity makeup water-in-oil (W/O) emulsion into the impregnation material. Conventionally, polyurethane sponges having porous network structures and hard textures have been dominantly used. It has an advantage of easy to manufacture because of its good impregnation property due to its structural characteristics. However, it releases emulsion too much at first use, and shows unexpected dramatic decline during the period of usage. In this study, we studied on makeup W/O emulsion with various features and developed the new foaming sponge, which showed excellent formability and proper absorption and discharge ability of cosmetic composition through the combination of natural rubber (NR) and styrene butadiene rubber (SBR). This impregnation material is characterized by the softness of elasticity like a rubber, high elongation and uniform output. We confirmed that this material can be used to develop makeup products using various oils depending on polarity and controlling the viscosity of the makeup W/O emulsion. Thus, it is concluded that these results provide valuable information in developing new cosmetics impregnation materials.

Improvement of the Strength Properties and Impact Resistance of the Cement Composite Materials by the use of Surface Modification of the Aramid Fibers (아라미드섬유의 표면개질에 의한 시멘트 복합재료의 강도특성 및 내충격성능의 향상효과)

  • Nam, Jeong-Soo;Yoo, Jae-Chul;Kim, Gyu-Yong;Kim, Hong-Seop;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.100-108
    • /
    • 2015
  • The purpose of this study is to evaluate the effect of improvement on the impact resistance and strength properties of cement composites by surface modification of aramid fiber. For aramid fiber reinforced cement composites, therefore, dispersion capability and the bonding efficiency between the fibers and the cement composite material need to be improved. It is possible by modifying surface properties to hydrophobic, it is considered that oiling agent ratio of 1.2 % and improvement of performance is in need to be investigated. In this study, short aramid fibers were mixed by different fiber length and oiling agent ratio. And improvement of strength properties and impact resistance performance of hybrid cement composites were evaluated under the influence of steel fiber. As a result, strength properties of aramid fiber reinforced cement composites are different by mixing ratio of fiber, oiling agent ratio and length of fiber. In case of cement composites which have same volume fraction and fiber length, tensile strength and flexural strength were improved with increase of the emulsions throughput of the fiber surface. The results of evaluation on the static strength properties had effects on impact resistance performance by high-velocity impact. And it was observed that the scabbing of rear was suppressed with increase of the oiling agent ratio.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants(II) The Phase Behavior and Flow Properties of O/W Emulsion According to the Addition of the Long Chain Alcohols (혼합 비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성(II) 고급 알코올의 첨가에 따른 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.423-431
    • /
    • 1993
  • Long chain alcohols, the mixtures of 1-hexadecanol/1-octadecanol, were used as cosurfactants for O/W emulsion prepared with glycerol monostearate/POE(100) monostearate mixed nonionic surfactants, and the phase behavior and flow properties of O/W emulsions were observed. The transition temperature of long chain alcohol was varied with the composition of 1-hexadecanol/1-octadecanol and had the lowest value when the mixed ratio of 1-hexadecanol/1-octadecanol was 2/1. The liquid crystalline phase was formed as the addition of long chain alcohol and the secondry droplet, the flocculate of the emulsion particles, was made, and thus the viscosity of the emulsion was increased. When the temperature of emulsion system was under the transition temperature of long chain alcohol, the mobility of hydrocarbon group of long chain alcohol was restricted, and thus gel structure was formed and the viscosity of the the O/W emulsion was increased, but along with the time, the liquid crystalline phase was disappeared and the viscosity of emulsion was decreased. Long chain alcohol/nonionic surfactants/water formed the liquid crystalline phase when the long chain alcohol was added above the saturation point of solution(2 wt% in this experoment), and the secondry droplet didn't formed when the long chain alcohol was added more than a certain amount (10 wt% in this experiment).

  • PDF

Optimization of the Conditions for the O/W Emulsion Containing ${\omega}3$ Polyunsaturated Fatty Acid (${\omega}3$계 고도불포화지방산을 함유한 고안정성 수중유적형 유화계의 확립)

  • Chang, Pahn-Shick;Cho, Gye-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1114-1119
    • /
    • 1998
  • The stabilities of O/W emulsions (lipophilic core material:lipophobic wall material=3:2, w/w) containing various kinds of emulsifiers were compared to determine the optimal conditions of the HLB (hydrophilic lipophilic balance) value, the concentration and composition of emulsifier, the ratio of core material to the wall material, and the concentration and composition of polymers in the wall material. The effect of different chemical types of emulsifiers and the influence of single vs. binary emulsifier systems were compared with 13 kinds of emulsifier HLB values of $0.6{\sim}16.7$ at the concentration of 0.50%(w/w). The emulsion system was stable (more than 99.0 of ESI value) when the HLB value of the emulsifier was more than 11.0 or less than 2.8 of emulsifier HLB value. But it was unstable (less than 40.0 of ESI value) at the HLB value of the emulsifier between 3.4 and 8.6. Especially, we could find out the emulsion containing the emulsifier of polyglycerol polyricinoleate (PGPR, HLB 0.6) became stable creamy state. And, the ESI value of binary emulsifier system containing 0.25%(w/w) of PGPR and 0.25%(w/w) of polyoxyethylene sorbitan monolaurate (PSML, HLB 16.7) was higher than that of any single emulsifier system at the concentration of 0.50%(w/w). The highest emulsion stability was obtained in the liquefied wall material composed of 0.25%(w/v) of waxy corn starch and 0.50%(w/v) of agar.

  • PDF