• Title/Summary/Keyword: Emulsification activity

Search Result 57, Processing Time 0.027 seconds

Emulsification Activity of Acinetobacter sp. 2-3A Isolated from Petroleum Oil-Contaminated Soil (유류오염 토양에서 분리한 Acinetobacter sp. 2-3A의 유화활성)

  • Lim, Ji-Hyun;Jeong, Seong-Yun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1261-1270
    • /
    • 2009
  • Fifty hydrocarbon-metabolizing microorganisms were isolated from soil samples polluted by the petroleum oils in Gamman-dong, Busan. Among them, strain 2-3A, showing strong emulsification activity, was selected by oil film-collapsing method. This bacterium was identified as Acinetobacter sp. and designated as Acinetobacter sp. 2-3A. The optimum temperature and pH on the growth of Acinetobacter sp. 2-3A were $25^{\circ}C$ and pH 7.0, respectively. The carbon and nitrogen sources for the most effective emulsification activity were 3.0% olive oil and 0.5% peptone, respectively. The 0.15% potassium phosphate was the most effective emulsification activity as a phosphate source. The optimum emulsification activity condition was $20^{\circ}C$, pH 7.0, and 2.0% NaCl. The optimum time for the best production of biosurfactant was 27 hrs. The emulsification stability was maintained at the temperature range from $4^{\circ}C$ to $100^{\circ}C$, pH range from 6.0 to 10.0, and NaCl range from 0% to 10%. For the oil resolvability of the biosurfactant, the residual oils were investigated by gas chromatography. As a result, it was verified that the biosurfactant decreased and decomposed crude oils from $_nC_{10}$ to $_nC_{32}$.

Lipase의 Transesterification반응에 의한 생물계면활성제의 합성

  • Sin, Yeong Min;Chung, Sook Hyun;Lee, Sang Ok;Shin, Hwa Kyoung;Lee, Tae Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.420-426
    • /
    • 1997
  • Pseudomonas sp. lipase (lipase AK) catalyzed transesterification reaction between fructose and vinyl laurate in anhydrous pyridine. The product of this process was identified as monoester of fructose and vinyl laurate. The synthetic product has been found to be an excellent emulsifier. The synthetic bioemulsifier showed a good emulsification activity and stability in comparison with other commercial emulsifiers, and good emulsification activity on various emulsifying substrates.

  • PDF

Principles of Physiology of Lipid Digestion

  • Bauer, E.;Jakob, S.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.282-295
    • /
    • 2005
  • The processing of dietary lipids can be distinguished in several sequential steps, including their emulsification, hydrolysis and micellization, before they are absorbed by the enterocytes. Emulsification of lipids starts in the stomach and is mediated by physical forces and favoured by the partial lipolysis of the dietary lipids due to the activity of gastric lipase. The process of lipid digestion continues in the duodenum where pancreatic triacylglycerol lipase (PTL) releases 50 to 70% of dietary fatty acids. Bile salts at low concentrations stimulate PTL activity, but higher concentrations inhibit PTL activity. Pancreatic triacylglycerol lipase activity is regulated by colipase, that interacts with bile salts and PTL and can release bile salt mediated PTL inhibition. Without colipase, PTL is unable to hydrolyse fatty acids from dietary triacylglycerols, resulting in fat malabsorption with severe consequences on bioavailability of dietary lipids and fat-soluble vitamins. Furthermore, carboxyl ester lipase, a pancreatic enzyme that is bile salt-stimulated and displays wide substrate reactivities, is involved in lipid digestion. The products of lipolysis are removed from the water-oil interface by incorporation into mixed micelles that are formed spontaneously by the interaction of bile salts. Monoacylglycerols and phospholipids enhance the ability of bile salts to form mixed micelles. Formation of mixed micelles is necessary to move the non-polar lipids across the unstirred water layer adjacent to the mucosal cells, thereby facilitating absorption.

Isolation and Characterization of a Bioemulsifier-Producing Bacterium for Marine Oil Spill Bioremediation (해양유류오염 방제를 위한 생물유화제 생산세균의 분리 및 특성)

  • 손홍주;차미선
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.473-480
    • /
    • 1997
  • Microorganisms producing bioemulslfiler were isolated from the sea water In Pusan coastal area. The isolated strain which had the highest emulsification activity and stability was identified as the genus Achetobacter from the results of morphological. cultural and biochemical tests and named Achetobacter sp. EL-C6 for convenience. The compositions of optimum medium for emulsification of crude oil by Acinetobacter sp. EL-C6 were crude oil 2.0%, NH4NO3 0.2%, $K_2HPO_4$ 0.01%, $MgSO_4$.$7H_2O$ 1.o%, $CaCl_2$.$2H_2O$ 0.1% and NaCl 3.0% at initial pH 7.5 and 3$0^{\circ}C$, respectively. The cultivation for emulsification of crude ell was carried out in 500m1 shaking flask containing 100m1 of the optimum medium at 3$0^{\circ}C$. The highest emulsification was observed after 5 days. The utilization on the various hydrocarbon of the Achetobacter sp. EL-C6 showed that utilization of n-alkane compounds were better than that of aromatic compounds. Among the petroleum compounds, crude ell was best utilized by the Achetobacter sp. EL-C6.

  • PDF

Physiological Characteristics of Biosurfactant-Producting Bacillus subtilis TBM 3101 (Biosurfactant를 생산하는 Bacillus subtilis TBM 3101의 생리학적 특성)

  • Kim, Seon-A;Lee, Young-Guen;Choi, Yong-Lark;Hwang, Cher-Won;Jeong, Yong-Kee;Joo, Woo-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • A biosurfactant-producing strain, Bacillus subtilis TBM 3101 was isolated from the soil sample at Tae-Baek Mountain through an antifungal test and emulsification assessment. The strain was assessed, regarding to the microbial growth, by physical and chemical test, surface tension, emulsification activity and stability. The surface tension of the isolate sharply decreased to the minimum 29mN/m at 48 h growth. Of note, its emulsification was stabilized to the highest degree when tributyrin was utilized as a substrate, indicating that in comparison to a variety of synthetic surfactants, the biosurfactant produced by the isolate was significantly similar to synthetic surfactant, tween 20. In addition, the biosurfactant showed high emulsification activity when soybean oil, crude oil and tetradecane were used as a substrate. Thus, these studies could contribute to the detection and development of biosurfactant beneficial to the environment and humans.

The Improvement of surface activity and Emulsification Activity by Transformation of Lipase Gene in Klebsiella sp. KCL-1, Oil-Degrading Bacterium. (Lipase gene의 도입에 의한 유류분해세균 Klebsiella sp. KCL-1의 표면활성과 유화력 향상)

  • 정수열
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.834-839
    • /
    • 2004
  • To improve and oil degrading activity, the lipase gene from Pseudomonase sp. was transformed into Klebsiella sp. KCL-l, an oil degrading bacterium. The selected trasformant was named as a KCL-1/pET-Lip. The surface tension of culture broth of KCL-1/pET-Lip was decreased to 33 dyne/cm from 55 dyne/cm using 4% (v/v) soybean oil as sole carbon source. The surface tension were 44 and 37.5 dyne/cm, to 2% (w/v) glucose and 4% (v/v) kerosene medium, respectively. The emulsification activity of the biosurfactant solution containing lipase of KCL-l/pET-Lip improved better than wild type KCL-l. The soybean oil was most efficient carbon source and substrate for surface activity and emulsification activity of KCL-1/pET-Lip. The expression of lipase was confirmed by SDS-PAGE.

Emulsification of O/W Emulsion Using Natural Mixed Emulsifiers : Optimization of Emulsion Stability Using Central Composite Design-Reponse Surface Methodology (천연 혼합유화제를 이용한 O/W 유화액의 제조 : 중심합성계획모델을 이용한 유화안정성 최적화)

  • Seheum Hong;Cuiwei Chen;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.299-306
    • /
    • 2023
  • In this study, the O/W emulsification processes with the natural surfactants that were extracted from Medicago sativa L. and Sapindus saponaria L. as emulsifiers were optimized using the central composite design-response surface methodology (CCD-RSM). Herein, independent parameters were the amounts of mixed emulsifiers, the mixing ratio of natural emulsifiers (soapberry saponin/alfalfa saponin), and the emulsification time, whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and antioxidant activity (DPPH radical scanvenging activity). Through basic experiments, the ranges of operation variables for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 12~14 wt%, 30~70%, and 20~30 min, respectively. The optimum operation variables deduced from CCD-RSM for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 13.2 wt%, 44.2%, and 25.8 min, respectively. Under these optimal conditions, the expected values of the ESI, MDS, and antioxidant activity were 88.7%, 815.5 nm, and 38.7%, respectively. And, the measured values of the ESI, MDS, and antioxidant activity were 90.6%, 830.2 nm, and 39.6%, respectively, and the average experimental error for validating the accuracy was about 2.1%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process using CCD-RSM.

Development of Curcumin with Anti-Oxidation Effect of Water Dispersibility using Multi-Emulsification Technology (멀티 유화 기술 이용 수분산성의 항산화 효능을 함유한 커큐민의 개발)

  • Lee, Kyung-Haeng;Lee, Eun-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.6
    • /
    • pp.561-567
    • /
    • 2021
  • Curcumin is not soluble in water. Therefore, curcumin emulsion that can dissolve well in water were prepared using multi-emulsification technology, and the antioxidant activities and physical properties of emulsion were measured. Although curcumin was not dissolved in water, it was confirmed to be well dispersed in water when prepared in an aqueous dispersion curcumin emulsion. After dissolving curcumin using water and ethanol as solvents, respectively, the DPPH and ABTS radical scavenging abilities of the filtrate and the curcumin emulsion were measured. Because it was not dissolved in water, activities were not shown. However, when curcumin was dissolved in ethanol, the activities increased as the concentration of curcumin increased. On the other hand, when the curcumin emulsion was dissolved in water, it was found to have abilities. The curcumin emulsion was nano-homogenized and the size and distribution of the emulsified spheres were measured. It was confirmed to be nano-sized as it appeared as 9.083 nm/100%. In the results of the DPPH radical and ABTS radical scavenging abilities of curcumin nano-emulsion, it was confirmed that there was no change in the antioxidant abilities. In conclusion, water-dispersible curcumin prepared using multi-emulsification technology, and it was confirmed to exhibit antioxidant activity and emulsion stability.

Quantitative Assay of Bioemulsifier by Turbidometric Method

  • Jeong, Yong-Leen;Park, Oh-Jin;Yoon, Byung-Dae;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.209-211
    • /
    • 1997
  • A quantitative method for assaying bioemulsifiers in culture broth was developed and applied to cultivation of Pseudomonas aeruginosa YPJ80. SED(Standard Emulsification Dilution), an indirect measure of bioemulsifier concentration, was proposed. Production of bioemulsifier and rhamnolipid reached their maximum simultaneously. However, the bioemulsifier/rhamnolipid ratio decreased with cultivation time. This indicates the presence of another bioemulsifier other than rhamnolipid. The bioemulsifier seems to be protein-like activator which showed emulsification activity in addition to rhamnolipid.

  • PDF

Purification and Characterization of Bioemulsifier Produced by Acinetobacter sp. BE-254

  • Kim, Soon-Han;Lee, Jae-Dong;Kim, Boo-Chul;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.184-188
    • /
    • 1996
  • The Acinetobacter sp. BE-254 isolated from soil sources produced a bioemulsifier in the medium supplemented with n-hexadecane. This bioemulsifier was purified by the procedures of fractionation (ammonium sulfate and chilled acetone), extraction by hexane, and column chromatography on silica gel 60. The results from various color reactions indicated that the bioemulsifier was a glycolipid. The purified emulsifier was very stable at pHs ranging from 4 to 10 and under heat treatment at $100^{\circ}C$ for 30 min. Emulsification activity was also hardly influenced by pH. The critical micelle concentration (CMC) and surface tension at the point ($\gamma_{cmc}$) of the bioemulsifier were approximately 35 mg/l and 30 mN/m, respectively. The bioemulsifier showed a fairly good emulsification activity and stability in comparison with other commercial emulsifiers in the basic formula composed of emulsifier, oil, and water.

  • PDF