알고리즘의 유연성 및 효율성으로 인해 GPS 이동측위 시 칼만필터가 주로 사용되어 왔으며 동시에 다양한 계통오차의 제거가 가능한 상대측위 기법이 널리 사용되어 왔다. 하지만 기선의 길이가 길어지게 되면 상대측위 기법을 사용하더라도 대기효과를 충분히 제거하기 어렵기 때문에 이 경우 제거되지 않고 남아 있는 대기효과를 상태벡터에 추가하여 추정을 하기도 한다. 칼만필터를 이용하는 경우 일반적으로 대기효과는 랜덤워크 혹은 일차가우스-마르코프 프로세스로 모델링하게 되는데 이때 프로세스 잡음에 대한 정확한 모델링이 필수적이다. 본 연구에서는 대기효과에 해당되는 프로세스 잡음 모델링을 위해 필요한 매개변수를 결정하였다. 이를 위해 이중차분 전리층 지연값과 천정방향 습윤지연값을 이용하여 실험적 자기상관함수를 계산하였으며 이를 통해 프로세스 잡음 모델링에 필요한 매개변수를 계산하였다. 결정된 매개변수값들은 유사한 대기환경에서 취득된 데이터에 대한 프로세스 잡음 모델링 시 직접 사용될 수 있으며 유사한 대기환경이 아닌 경우일 지라도 초기 근사값으로 활용될 수 있을 것이다.
최근 항만물류산업의 고부가가치화에 관한 논의와 더불어, 항만물류산업의 e-비즈니스화에 대한 다양한 연구가 진행되고 있다. 그러나, 두드러진 연구의 성과는 아직까지 나와 있지 않은 실정이다. 게다가, e-비즈니스화의 활성화를 위한 기술적 측면에서의 여러 가지 방안들은 업계의 이용실적이 미비하여, 실효를 거두고 있지 못하고 있는 실정이다. 본 연구에서는 이와 같은 문제에 주목하여, 실증적인 차원에서 인지 모델링 기법을 바탕으로 항만물류산업의 e-비즈니스에 영향을 미치는 요인을 추출하고, 그 체계를 수립하는 것을 연구의 목적으로 한다. 이러한 과정을 통해, 항만물류산업의 성공적인 e-비즈니스 도입을 위해 선행되어야 할 사항들을 파악하고, 주요 핵심 사항들을 제안하고자 한다.
The sorption of UO$_{2}$$^{2+}$ onto goethite and kaolinite under various experimental conditions was successfully interpreted using surface complexation modeling (SCM). The SCM approach used in this work is the triple-layer model (TLM) in which weakly bonded ions are modeled as outer-sphere (ion-pair) complexes and strongly bonded ions as inner-sphere (surface coordination) complexes. The change of ionic strength did not affect the U(VI) sorption onto goethite, thus the formation of inner-sphere surface complexes, (FeO)$_2$UO$_2$ and (FeO)$_2$(UO$_2$)$_3$OH$_{5}$ was assumed to simulate the effects of ionic strength and goethite concentration. On the other hand, the U(VI) sorption onto kaolinite showed ionic strength dependence, thus the formation of AlO-UO$_{2}$$^{2+}$(outer-sphere complex) and SiO(UO$_2$)$_3$OH$_{5}$ (inner-sphere complex) was assumed to simulate the experimental data. In the presence of carbonates, the sorption of U(VI) onto kaolinite decreased in the weakly alkaline pH range. This was well simulated assuming the formation of a outer-sphere surface complex, A1OH$^{2+}$- (UO$_2$)$_2$CO$_3$OH$_3$. Since SCM approach uses thermodynamic data such as surface complexation constants, it is more predictive than empirical modeling approach in which conditional values such as partition coefficient are used. used.
Flow accelerated corrosion (FAC) of the carbon steel piping has been a significant problem in nuclear power plants. FAC occurs under certain hydrodynamic, environmental, and material conditions, and extensive research into the factors of FAC has been conducted. The basic process of FAC is now relatively well understood; however, a full mechanistic model has not yet been established. Recently, the Korea Atomic Energy Research Institute (KAERI) has built a large experiment loop system for FAC. To produce significant experimental results using this system, the factors affecting on FAC should be analyzed quantitatively, and a model needs to be developed. In this work, a statistical modeling methodology to develop an empirical model is described in detail, and a preliminary model is suggested. Firstly, FAC data were collected from the research literature in Japan and the results of domestic experiments. The flow rate, water temperature, pH at room temperature, and the Cr content are selected as major factors, and nonlinear regression is used to find the best fit of the available data. An iterative procedure between suggesting and evaluating a model is used until an optimum model is obtained. The developed model gives the FAC rate comparable to the measured FAC rate. The developed model is going to be refined using additional laboratory data in the future.
빅데이터 관련 기술의 발전으로 공공 보건 분야 등을 필두로 데이터에 기반한 정책을 결정하는 체계적인 방법론에 대한 관심이 증가하고 있다. 본 연구는 데이터를 기반으로 국가, 사회의 주요 이슈를 지능적으로 탐지하기 위해서 도메인 전문가와의 협업을 통해 이슈 탐지 모델을 개발하는 방법을 제안한다. 우선, '해외 발생 감염병 국내 유입' 이슈를 대상으로 이슈에 영향을 주는 요인을 도출하고, 영향 요인을 대표하는 변수 들을 설정한다. 다음으로 시스템 다이내믹스 기법을 이용하여 각 영향요인 간의 인과 분석을 통해 인과지도를 구성하여 영향력 높은 주요 요인들을 찾아낸다. 이 과정에서는 데이터 분석가와 감염병 도메인의 전문가와의 협업을 통해 실증적인 모델링을 진행한다. 이러한 도메인 지식 기반 이슈 탐지 모델을 기반으로 하여 상시 모니터링이 가능한 이슈 탐지 체계가 구축되면 더욱 효과적인 정책 의사 결정이 가능할 것이다.
Journal of the Korean Data and Information Science Society
/
제20권1호
/
pp.179-190
/
2009
금융 산업에서, 의사결정나무 분석은 분류분석을 위해서 널리 사용되는 분석기법이다. 그러나 금융 산업에서 실제로 의사결정나무 분석을 적용할 때, 발생하는 문제점 중 하나는 설명변수의 수가 너무 많다는 점이다. 따라서 모형의 결과에 별 영향을 미치지 않으면서 설명변수의 수를 줄이는 효과적인 방법을 연구할 필요가 있다. 본 연구에서는 의사결정 나무 분석에서 모형의 정확성에 근거한 최선의 변수 선택 방법을 구하기 위하여 다양한 변수 선택방법들을 비교 분석 하였다. 이를 위하여 본 연구에서는 한 보험회사의 연금 보험 상품 자료에 다양한 설명변수 축소방법을 적용하여, 가장 적은 수의 설명변수를 가지고 가장 높은 정확도를 제공하여 주는 설명변수 축소방법을 구하는 실증적인 연구를 시행하였다. 이러한 실험결과, 신경망의 민감도 분석을 이용하여 변수를 축소하고, 그 축소된 변수를 이용하여 의사결정나무 분석 모델을 생성하는 경우가 가장 효율적인 설명변수 축소방법임을 알 수 있었다.
A mathematical modeling of $NO_x$ reduction in $NH_3$-SCR process is conducted. The present deterministic model solves one-dimensional conservation equations of mass and species concentrations for channel flows and the catalytic reaction. NO and NO_2$ reactions by the vanadium catalyst in the presence of $NH_3$ are calculated with the rate expressions of Langmuir-Hinshelwood scheme. The modeling was validated with extensive empirical data regarding $NO_x$ reduction efficiency. Analysis of De-$NO_x$ sensitivity conducted with regard to oxygen and water yielded highly accurate prediction over a wide range of $NO_2/NO_x$ ratios from 0 to 1 in a temperature range of $200^{\circ}C{\sim}550^{\circ}C$. The $NO_x$ reduction largely depends on $NO_2/NO_x$ ratio at temperatures lower than $300^{\circ}C$. NO reduction efficiency is significantly augmented with increasing in $NH_3$/NO ratio at higher temperatures, whereas rather insensitive to the $NH_3$/NO ratio at lower temperatures.
Kim, Yeon Soo;Hofman, G.L.;Ryu, Ho Jin;Park, Jong Man;Robinson, A.B.;Wachs, D.M.
Nuclear Engineering and Technology
/
제45권7호
/
pp.827-838
/
2013
Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to $200^{\circ}C$, and for Mo content in the range of 6 - 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.
최근 항만물류산업의 고부가가치화에 관한 논의가 활발한 가운데, 항만물류산업의 e-비즈니스화에 대한 다양한 연구가 진행되고 있다. 그러나, 두드러진 연구의 성과는 아직까지 나와 있지 않은 실정이며, e-비즈니스화 자체에 대한 회의적인 견해도 적지않은 것이 현실이다. 게다가, e-비즈니스화의 활성화를 위한 기술적 측면에서의 여러 가지 방안들은 업계의 이용실적이 미비하여, 실효를 거두고 있지 못하고 있는 실정이다. 본 연구에서는 이와 같은 문제에 주목하여, 실증적인 차원에서 인지 모델링 기법을 바탕으로 항만물류산업의 f-비즈니스에 영향을 미치는 요인을 추출하고, 그 체계를 수립하는 것을 연구의 목적으로 한다. 이러한 과정을 통해, 항만물류산업의 성공적인 e-비즈니스 도입을 위해 선행되어야 할 사항들을 파악하고, 주요 핵심 사항들을 제안하고자 한다.
Flow-Accelerated Corrosion (FAC) is a phenomenon in which a protective coating on a metal surface is dissolved by a flow of fluid in a metal pipe, leading to continuous wall-thinning. Recently, many countries have developed computer codes to manage FAC in power plants, and the FAC prediction model in these computer codes plays an important role in predictive performance. Herein, the FAC prediction model was developed by applying a machine learning method and the conventional nonlinear regression method. The random forest, a widely used machine learning technique in predictive modeling led to easy calculation of FAC tendency for five input variables: flow rate, temperature, pH, Cr content, and dissolved oxygen concentration. However, the model showed significant errors in some input conditions, and it was difficult to obtain proper regression results without using additional data points. In contrast, nonlinear regression analysis predicted robust estimation even with relatively insufficient data by assuming an empirical equation and the model showed better predictive power when the interaction between DO and pH was considered. The comparative analysis of this study is believed to provide important insights for developing a more sophisticated FAC prediction model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.