• Title/Summary/Keyword: Empirical Feature Map

Search Result 6, Processing Time 0.023 seconds

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

Modified Kernel PCA Applied To Classification Problem (수정된 커널 주성분 분석 기법의 분류 문제에의 적용)

  • Kim, Byung-Joo;Sim, Joo-Yong;Hwang, Chang-Ha;Kim, Il-Kon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.243-248
    • /
    • 2003
  • An incremental kernel principal component analysis (IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis (KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenspace should be recomputed. IKPCA overcomes these problems by incrementally computing eigenspace model and empirical kernel map The IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the feature extraction and classification problem on nonlinear data set.

A Genetic Algorithm-based Construction Mechanism for FCM and Its Empirical Analysis of Decision Support Performance : Emphasis on Solving Corporate Software Sales Problem (유전자 알고리즘을 이용한 퍼지인식도 생성 메커니즘의 의사결정 효과성에 관한 실증연구 : 기업용 소프트웨어 판매 문제를 중심으로)

  • Chung, Nam-Ho;Lee, Nam-Ho;Lee, Kun-Chang
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.157-176
    • /
    • 2007
  • Fuzzy cognitive map(FCM) has long been used as an effective way of constructing the human's decision making process explicitly. By taking advantage of this feature, FCM has been extensively used in providing what-if solutions to a wide variety of business decision making problems. In contrast, the goal-seeking analysis mechanism by using the FCM is rarely observed in literature, which remains a research void in the fields of FCM. In this sense, this study proposes a new type of the FCM-based goal-seeking analysis which is based on utilizing the genetic algorithm. Its main recipe lies in the fact that the what-if analysis as well as goal-seeking analysis are enabled very effectively by incorporating the genetic algorithm into the FCM-driven inference process. To prove the empirical validity of the proposed approach, valid questionnaires were gathered from a number of experts on software sales, and analyzed statistically. Results showed that the proposed approach is robust and significant.

Fast Video Detection Using Temporal Similarity Extraction of Successive Spatial Features (연속하는 공간적 특징의 시간적 유사성 검출을 이용한 고속 동영상 검색)

  • Cho, A-Young;Yang, Won-Keun;Cho, Ju-Hee;Lim, Ye-Eun;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.929-939
    • /
    • 2010
  • The growth of multimedia technology forces the development of video detection for large database management and illegal copy detection. To meet this demand, this paper proposes a fast video detection method to apply to a large database. The fast video detection algorithm uses spatial features using the gray value distribution from frames and temporal features using the temporal similarity map. We form the video signature using the extracted spatial feature and temporal feature, and carry out a stepwise matching method. The performance was evaluated by accuracy, extraction and matching time, and signature size using the original videos and their modified versions such as brightness change, lossy compression, text/logo overlay. We show empirical parameter selection and the experimental results for the simple matching method using only spatial feature and compare the results with existing algorithms. According to the experimental results, the proposed method has good performance in accuracy, processing time, and signature size. Therefore, the proposed fast detection algorithm is suitable for video detection with the large database.

Empirical Comparison of Deep Learning Networks on Backbone Method of Human Pose Estimation

  • Rim, Beanbonyka;Kim, Junseob;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2020
  • Accurate estimation of human pose relies on backbone method in which its role is to extract feature map. Up to dated, the method of backbone feature extraction is conducted by the plain convolutional neural networks named by CNN and the residual neural networks named by Resnet, both of which have various architectures and performances. The CNN family network such as VGG which is well-known as a multiple stacked hidden layers architecture of deep learning methods, is base and simple while Resnet which is a bottleneck layers architecture yields fewer parameters and outperform. They have achieved inspired results as a backbone network in human pose estimation. However, they were used then followed by different pose estimation networks named by pose parsing module. Therefore, in this paper, we present a comparison between the plain CNN family network (VGG) and bottleneck network (Resnet) as a backbone method in the same pose parsing module. We investigate their performances such as number of parameters, loss score, precision and recall. We experiment them in the bottom-up method of human pose estimation system by adapted the pose parsing module of openpose. Our experimental results show that the backbone method using VGG network outperforms the Resent network with fewer parameter, lower loss score and higher accuracy of precision and recall.