• Title/Summary/Keyword: Emotional Facial Expression

Search Result 127, Processing Time 0.028 seconds

Facial Expression Algorithm For Risk Situation Recognition (얼굴 표정인식을 이용한 위험상황 인지)

  • Kwak, Nae-jong;Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.197-200
    • /
    • 2014
  • This paper proposes an algorithm for risk situation recognition using facial expression. The proposed method recognitions the surprise and fear expression among human's various emotional expression for recognizing risk situation. The proposed method firstly extracts the facial region from input, detects eye region and lip region from the extracted face. And then, the method applies Uniform LBP to each region, discriminates facial expression, and recognizes risk situation. The proposed method is evaluated for Cohn-Kanade database image. The proposed method produces good results of facial expression and discriminates risk situation well.

  • PDF

3-D Facial Animation on the PDA via Automatic Facial Expression Recognition (얼굴 표정의 자동 인식을 통한 PDA 상에서의 3차원 얼굴 애니메이션)

  • Lee Don-Soo;Choi Soo-Mi;Kim Hae-Hwang;Kim Yong-Guk
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.795-802
    • /
    • 2005
  • In this paper, we present a facial expression recognition-synthesis system that recognizes 7 basic emotion information automatically and renders face with non-photorelistic style in PDA For the recognition of the facial expressions, first we need to detect the face area within the image acquired from the camera. Then, a normalization procedure is applied to it for geometrical and illumination corrections. To classify a facial expression, we have found that when Gabor wavelets is combined with enhanced Fisher model the best result comes out. In our case, the out put is the 7 emotional weighting. Such weighting information transmitted to the PDA via a mobile network, is used for non-photorealistic facial expression animation. To render a 3-D avatar which has unique facial character, we adopted the cartoon-like shading method. We found that facial expression animation using emotional curves is more effective in expressing the timing of an expression comparing to the linear interpolation method.

Fear and Surprise Facial Recognition Algorithm for Dangerous Situation Recognition

  • Kwak, NaeJoung;Ryu, SungPil;Hwang, IlYoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.51-55
    • /
    • 2015
  • This paper proposes an algorithm for risk situation recognition using facial expression. The proposed method recognitions the surprise and fear expression among human's various emotional expression for recognizing dangerous situation. The proposed method firstly extracts the facial region using Harr-like technique from input, detects eye region and lip region from the extracted face. And then, the method applies Uniform LBP to each region, detects facial expression, and recognizes dangerous situation. The proposed method is evaluated for MUCT database image and web cam input. The proposed method produces good results of facial expression and discriminates dangerous situation well and the average recognition rate is 91.05%.

Effect of Depressive Mood on Identification of Emotional Facial Expression (우울감이 얼굴 표정 정서 인식에 미치는 영향)

  • Ryu, Kyoung-Hi;Oh, Kyung-Ja
    • Science of Emotion and Sensibility
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • This study was designed to examine the effect of depressive mood on identification of emotional facial expression. Participants were screened out of 305 college students on the basis of the BDI-II score. Students with BDI-II score higher than 14(upper 20%) were selected for the Depression Group and those with BDI-II score lower than 5(lower 20%) were selected for the Control Group. A final sample of 20 students in the Depression Group and 20 in the Control Group were presented with facial expression stimuli of an increasing degree of emotional intensity, slowly changing from a neutral to a full intensity of happy, sad, angry, or fearful expressions. The result showed that there was the significant interaction of Group by Emotion(esp. happy and sad) which suggested that depressive mood affects processing of emotional stimuli such as facial expressions. Implication of this result for mood-congruent information processing were discussed.

  • PDF

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

A Study on Emotion Recognition Systems based on the Probabilistic Relational Model Between Facial Expressions and Physiological Responses (생리적 내재반응 및 얼굴표정 간 확률 관계 모델 기반의 감정인식 시스템에 관한 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.513-519
    • /
    • 2013
  • The current vision-based approaches for emotion recognition, such as facial expression analysis, have many technical limitations in real circumstances, and are not suitable for applications that use them solely in practical environments. In this paper, we propose an approach for emotion recognition by combining extrinsic representations and intrinsic activities among the natural responses of humans which are given specific imuli for inducing emotional states. The intrinsic activities can be used to compensate the uncertainty of extrinsic representations of emotional states. This combination is done by using PRMs (Probabilistic Relational Models) which are extent version of bayesian networks and are learned by greedy-search algorithms and expectation-maximization algorithms. Previous research of facial expression-related extrinsic emotion features and physiological signal-based intrinsic emotion features are combined into the attributes of the PRMs in the emotion recognition domain. The maximum likelihood estimation with the given dependency structure and estimated parameter set is used to classify the label of the target emotional states.

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

The Emotional Boundary Decision in a Linear Affect-Expression Space for Effective Robot Behavior Generation (효과적인 로봇 행동 생성을 위한 선형의 정서-표정 공간 내 감정 경계의 결정 -비선형의 제스처 동기화를 위한 정서, 표정 공간의 영역 결정)

  • Jo, Su-Hun;Lee, Hui-Sung;Park, Jeong-Woo;Kim, Min-Gyu;Chung, Myung-Jin
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.540-546
    • /
    • 2008
  • In the near future, robots should be able to understand human's emotional states and exhibit appropriate behaviors accordingly. In Human-Human Interaction, the 93% consist of the speaker's nonverbal communicative behavior. Bodily movements provide information of the quantity of emotion. Latest personal robots can interact with human using multi-modality such as facial expression, gesture, LED, sound, sensors and so on. However, a posture needs a position and an orientation only and in facial expression or gesture, movements are involved. Verbal, vocal, musical, color expressions need time information. Because synchronization among multi-modalities is a key problem, emotion expression needs a systematic approach. On the other hand, at low intensity of surprise, the face could be expressed but the gesture could not be expressed because a gesture is not linear. It is need to decide the emotional boundaries for effective robot behavior generation and synchronization with another expressible method. If it is so, how can we define emotional boundaries? And how can multi-modality be synchronized each other?

  • PDF

Dynamic Emotion Classification through Facial Recognition (얼굴 인식을 통한 동적 감정 분류)

  • Han, Wuri;Lee, Yong-Hwan;Park, Jeho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.

The Effect of Emotional Expression Change, Delay, and Background at Retrieval on Face Recognition (얼굴자극의 검사단계 표정변화와 검사 지연시간, 자극배경이 얼굴재인에 미치는 효과)

  • Youngshin Park
    • Korean Journal of Culture and Social Issue
    • /
    • v.20 no.4
    • /
    • pp.347-364
    • /
    • 2014
  • The present study was conducted to investigate how emotional expression change, test delay, and background influence on face recognition. In experiment 1, participants were presented with negative faces at study phase and administered for standard old-new recognition test including targets of negative and neutral expression for the same faces. In experiment 2, participants were studied negative faces and tested by old-new face recognition test with targets of negative and positive faces. In experiment 3, participants were presented with neutral faces at study phase and had to identify the same faces with no regard for negative and neutral expression at face recognition test. In all three experiments, participants were assigned into either immediate test or delay test, and target faces were presented in both white and black background. Results of experiments 1 and 2 indicated higher rates for negative faces than neutral or positive faces. Facial expression consistency enhanced face recognition memory. In experiment 3, the superiority of facial expression consistency were demonstrated by higher rates for neutral faces at recognition test. If facial expressions were consistent across encoding and retrieval, memory performance on face recognition were enhanced in all three experiments. And the effect of facial expression change have different effects on background conditions. The findings suggest that facial expression change make face identification hard, and time and background also affect on face recognition.

  • PDF