• Title/Summary/Keyword: Emotion recognition system

Search Result 220, Processing Time 0.028 seconds

Speech Emotion Recognition Using Confidence Level for Emotional Interaction Robot (감정 상호작용 로봇을 위한 신뢰도 평가를 이용한 화자독립 감정인식)

  • Kim, Eun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.755-759
    • /
    • 2009
  • The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Especially, speaker-independent emotion recognition is a challenging issue for commercial use of speech emotion recognition systems. In general, speaker-independent systems show a lower accuracy rate compared with speaker-dependent systems, as emotional feature values depend on the speaker and his/her gender. Hence, this paper describes the realization of speaker-independent emotion recognition by rejection using confidence measure to make the emotion recognition system be homogeneous and accurate. From comparison of the proposed methods with conventional method, the improvement and effectiveness of proposed methods were clearly confirmed.

Pattern Recognition Methods for Emotion Recognition with speech signal

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.150-154
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition are determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section.

Emotion Recognition using Prosodic Feature Vector and Gaussian Mixture Model (운율 특성 벡터와 가우시안 혼합 모델을 이용한 감정인식)

  • Kwak, Hyun-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.375.2-375
    • /
    • 2002
  • This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far This is the why people don't want to get familiar with multi-service robots. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. (omitted)

  • PDF

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

A study on behavior response of child by emotion coaching of teacher based on emotional recognition technology (감성인식기술 기반 교사의 감정코칭이 유아에게 미치는 반응 연구)

  • Choi, Moon Jung;Whang, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.323-330
    • /
    • 2017
  • Emotion in early childhood has been observed to make an important effect on behavioral development. The teacher has coached to develop good behavior based on considering emotional response rather than rational response. This study was to determine significance of emotional coaching for behavior development according emotion recognized by non-verbal measurement system developed specially in this study. The participants were 44 people and were asked to study in four experimental situation. The experiment was designed to four situation such as class without coaching, behavioral coaching, emotion coaching, and emotion coaching based on emotional recognition system. The dependent variables were subjective evaluation, behavioral amplitude, and HRC (Heart Rhythm Coherence) of heart response. The results showed the highest positive evaluation, behavioral amplitude, and HRC at emotion coaching based on emotional recognition system. In post-doc analysis, the subjective evaluation showed no difference between emotion coaching and system based emotion coaching. However, the behavioral amplitude and HRC showed a significant response between two coaching situation. In conclusion, quantitative data such as behavioral amplitude and HRC was expected to solve the ambiguity of subjective evaluation. The emotion coaching of teacher using emotional recognition system was can be to improve positive emotion and psychological stability for children.

Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel (RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술)

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

Analysis of Electroencephalogram Electrode Position and Spectral Feature for Emotion Recognition (정서 인지를 위한 뇌파 전극 위치 및 주파수 특징 분석)

  • Chung, Seong-Youb;Yoon, Hyun-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • This paper presents a statistical analysis method for the selection of electroencephalogram (EEG) electrode positions and spectral features to recognize emotion, where emotional valence and arousal are classified into three and two levels, respectively. Ten experiments for a subject were performed under three categorized IAPS (International Affective Picture System) pictures, i.e., high valence and high arousal, medium valence and low arousal, and low valence and high arousal. The electroencephalogram was recorded from 12 sites according to the international 10~20 system referenced to Cz. The statistical analysis approach using ANOVA with Tukey's HSD is employed to identify statistically significant EEG electrode positions and spectral features in the emotion recognition.

Emotion Recognition Method for Driver Services

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2007
  • Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology developed, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on the reinforcement learning.

Interactive Feature selection Algorithm for Emotion recognition (감정 인식을 위한 Interactive Feature Selection(IFS) 알고리즘)

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.647-652
    • /
    • 2006
  • This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive Feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.

Toward an integrated model of emotion recognition methods based on reviews of previous work (정서 재인 방법 고찰을 통한 통합적 모델 모색에 관한 연구)

  • Park, Mi-Sook;Park, Ji-Eun;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.101-116
    • /
    • 2011
  • Current researches on emotion detection classify emotions by using the information from facial, vocal, and bodily expressions, or physiological responses. This study was to review three representative emotion recognition methods, which were based on psychological theory of emotion. Firstly, literature review on the emotion recognition methods based on facial expressions was done. These studies were supported by Darwin's theory. Secondly, review on the emotion recognition methods based on changes in physiology was conducted. These researches were relied on James' theory. Lastly, a review on the emotion recognition was conducted on the basis of multimodality(i.e., combination of signals from face, dialogue, posture, or peripheral nervous system). These studies were supported by both Darwin's and James' theories. In each part, research findings was examined as well as theoretical backgrounds which each method was relied on. This review proposed a need for an integrated model of emotion recognition methods to evolve the way of emotion recognition. The integrated model suggests that emotion recognition methods are needed to include other physiological signals such as brain responses or face temperature. Also, the integrated model proposed that emotion recognition methods are needed to be based on multidimensional model and take consideration of cognitive appraisal factors during emotional experience.

  • PDF