• Title/Summary/Keyword: Emitting

Search Result 3,893, Processing Time 0.033 seconds

Highly Efficient Phosphorescence Emitting Materials and Applications to Organic Light Emitting Diode

  • Sung, Lee-Bum;Yun, Jung-Sang;Nam, Byun-Ki;Sung, Yu-Han;Lee, Yoo-JIn;Kim, Sung-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1143-1146
    • /
    • 2005
  • Novel series of electron-transporting hosts, pentavalent aluminum complexes containing 8 hydroxyquinoline ligands and various phenolato ligands were synthesized, and organic light-emitting diodes (OLEDs) were fabricated using these complexes as host materials of phosphorescent emitting device and the fabricated phosphorescent emitting device showed low driving voltage, high efficiency at high current density and good stability under conventional driving condition.

  • PDF

Comparative Investigation on the Light Emitting Characteristics of OLED Devices with a Single Layer of Alq3 and a Double Layer of Rubrene/Alq3

  • Jeong, Geon-Su;Lee, Bung-Ju;Kim, Hui-Seong;;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.246.2-246.2
    • /
    • 2014
  • Green-light emitting OLED with single layer of Alq3 and orange-light emitting OLED with double layer of rubrene/Alq3 as EML were fabricated and characterized comparatively. The two OLED devices were based on an anode of ITO, HTL of TPD, and cathode of Al, respectively. The green light emitting OLED was then prepared with Alq3 as both ETL and EML, while the orange-light emitting OLED was prepared with rubrene deposited on Alq3. All the component layers of the OLED devices were deposited by a thermal evaporation technique in vacuum. Photoluminescence characteristics of the EML layers were investigated. Electrolumiscence characteristics of the OLED devices were comparatively investigated.

  • PDF

Emission zone in organic light-emitting diodes(OLEDs)

  • Noh, Sok-Won;Lim, Sung-Taek;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.127-128
    • /
    • 2000
  • Organic light-emitting diodes(OLEDs) are constructed using multilayer organic thin films. The hole-transport layer is PVK and the emitting material is rubrene and $Alq_3$. The emitting layer is doped with rubrene partially. As the partially-doped layer migrate from the interface PVK/emitting layer, the emission peak of rubrene decrease and diminish. By comparing with the previous reports, we propose the zero-field hole injection barrier at ITO/PVK interface and hole-trapping effect of rubrene in host materials as predominant factor to determine the emission zone.

  • PDF

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol;Yang, Heesun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.449-469
    • /
    • 2017
  • The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.

Color stable and efficient white organic light emitting diodes with phosphorescent emitters

  • Lee, Hyun-Koo;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.415-417
    • /
    • 2009
  • Color stable and efficient two wavelength white organic light emitting diodes (OLEDs) were fabricated using a iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,$C^2$'] picolinate (FIrpic) as a blue phosphorescent emitter and a bis(1-phenylisoquinolinato-$C^2$,N)iridium (acetylacetonate) ((piq)$_2$Ir(acac)) as a red phosphorescent emitter. The emitting layers consist of two blue emitting layers and one red emitting layer which is between the two blue layers. The device reaches the peak efficiencies of 7.84 % and 10.3 cd/A at 0.6 mA/$cm^2$. Furthermore, there was little change of EL spectra according to current density change in the device.

  • PDF

Comparison of Junction Temperature for Top-Emitting Organic Light-Emitting Diodes Fabricated on Different Substrates

  • Juang, Fuh-Shyang;Tsai, Yu-Sheng;Wang, Shun-Hsi;Chen, Chuan-Hung;Cheng, Chien-Lung;Liao, Teh-Chao;Chen, Guan-Wen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1148-1151
    • /
    • 2009
  • A self-designed, written in labview, Organic Light-Emitting Diode junction temperature measuring program was used to calculate the internal junction temperature for devices during operation, and an infrared thermometer was used to measure the backside temperature of the device substrate, to discuss the effects of the junction and substrate temperature difference to the characteristics of the device.

  • PDF

Emission Properties of Electroluminescent Device having Emitting Layer Dried at Different Temperature (발광층의 건조온도에 따른 전계발광소자의 발광특성)

  • 서부완;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.602-605
    • /
    • 1999
  • We dried emitting layer of EL device at 30, 80, I20 and $150^{\circ}C$ for Ihr to investigate the effects to the emission characteristics of devices. PL intensity of P3HT thin film decreased with increasing the drying temperature. But, the EL intensity and stability of device with emitting layer dried at $150^{\circ}C$ were the best. We think it s because of absence of water and remaining solvent in P3HT emitting layer. So, We suggest that the drying temperature of emitting layer of EL device should be select slightly low temperature than its glass transition temperature.

  • PDF

White Light-Emitting Electroluminescent Device with a Mixed Single Emitting Layer Structure (혼합 발광층을 이용한 백색 전계발광소자의 발광특성)

  • 김주승;서부완;구할본;조재철;박복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.606-609
    • /
    • 1999
  • We fabricated white light-emitting diode which have a mixed single emitting layer containing poly(N-vinylcarbazole), trois(8-hydroxyquinoline)aluminum and poly(3-hexylthiophene) and investigated the emission properties of it. It is possible to obtain a blue light from poly(N-vinylcarbazole). green light from tris(8-hydroxyquinoline)aluminum and red light from poly(3-hexylthiophene). The fabricated device emits white light with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to Alq₃ and P3HT resulted in decreasing the blue light intensity from PVK. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Kim, Jiyong;Kim, Jungho;Kim, Kyoung-Youm
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1663-1674
    • /
    • 2018
  • We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

Recent Progress in Alpha-emitting Radiopharmaceutical Development for Clinical Application

  • Choong Mo Kang;Yearn Seong Choe
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.157-166
    • /
    • 2022
  • Targeted alpha therapy began to be applied to the treatment of late-stage cancer patients because of its dramatic therapeutic efficacy in patients who have no responses with beta-emitting radiopharmaceuticals. However, its strong cytotoxicity may cause side effects due to undesirable uptake in non-target tissues. In order to use alpha-emitting radiopharmaceuticals for early-stage patients as well as late-stage cancer patients, therefore, modifications on their chemical structures are required. In this review, the recent progress in the development of alpha-emitting radiopharmaceuticals is discussed.