• Title/Summary/Keyword: Emissions uncertainty

Search Result 76, Processing Time 0.027 seconds

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

The Estimation of Benzo(a)pyrene Emission from Fuel Combustion in the Seosan Area (서산지역에서 연료연소에 의해 배출된 benzo(a)pyrene의 배출량 산정)

  • Kim, Ok;Song, Youngho;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.1
    • /
    • pp.55-63
    • /
    • 2017
  • Objectives: This study estimated the emission quantity of benzo(a)pyrene(BaP) produced by fuel combustion in the Seosan area, and analyzed the uncertainty regarding the emissions. Methods: It was based on data from a national agency and from public institutions. Emissions were estimated by using national-level guidelines. The total estimated emissions were analyzed by performing Monte Carlo analysis. Results: The full emission quantity of BaP which was discharged by fuel combustion in the Seosan area stood at 1,194.79 g/yr. The point source emissions came to 184.16 g/yr (95% CI; 158.40-209.39). The line source emissions reached 315.33 g/yr (95% CI; 284.99-344.03). The area source emissions accounted for 695.31 g/yr (95% CI; 605.10-793.88). Chemical and compound manufacturing was the highest with 639.13 g/yr (95% CI; 542.95-728.24) in terms of emissions and oil refinery emissions were high with 153.10 g/yr (95% CI; 129.19~177.46). It was found in the Seosan area that the major source of BaP is the manufacturing of chemicals and chemical products. Conclusion: The emission quantity of BaP which was discharged by the fuel combustion in Seosan area reached 1,194.79 g/yr. Research needs to be continued for the definite estimation of emission of BaP henceforth.

Global Carbon Budget Study using Global Carbon Cycle Model (탄소순환모델을 이용한 지구 규모의 탄소 수지 연구)

  • Kwon, O-Yul;Jung, Jaehyung
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1169-1178
    • /
    • 2018
  • Two man-made carbon emissions, fossil fuel emissions and land use emissions, have been perturbing naturally occurring global carbon cycle. These emitted carbons will eventually be deposited into the atmosphere, the terrestrial biosphere, the soil, and the ocean. In this study, Simple Global Carbon Model (SGCM) was used to simulate global carbon cycle and to estimate global carbon budget. For the model input, fossil fuel emissions and land use emissions were taken from the literature. Unlike fossil fuel use, land use emissions were highly uncertain. Therefore land use emission inputs were adjusted within an uncertainty range suggested in the literature. Simulated atmospheric $CO_2$ concentrations were well fitted to observations with a standard error of 0.06 ppm. Moreover, simulated carbon budgets in the ocean and terrestrial biosphere were shown to be reasonable compared to the literature values, which have considerable uncertainties. Simulation results show that with increasing fossil fuel emissions, the ratios of carbon partitioning to the atmosphere and the terrestrial biosphere have increased from 42% and 24% in the year 1958 to 50% and 30% in the year 2016 respectively, while that to the ocean has decreased from 34% in the year 1958 to 20% in the year 2016. This finding indicates that if the current emission trend continues, the atmospheric carbon partitioning ratio might be continuously increasing and thereby the atmospheric $CO_2$ concentrations might be increasing much faster. Among the total emissions of 399 gigatons of carbon (GtC) from fossil fuel use and land use during the simulation period (between 1960 and 2016), 189 GtC were reallocated to the atmosphere (47%), 107 GtC to the terrestrial biosphere (27%), and 103GtC to the ocean (26%). The net terrestrial biospheric carbon accumulation (terrestrial biospheric allocations minus land use emissions) showed positive 46 GtC. In other words, the terrestrial biosphere has been accumulating carbon, although land use emission has been depleting carbon in the terrestrial biosphere.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

Ozone Simulations over the Seoul Metropolitan Area for a 2007 June Episode, Part I: Evaluating Volatile Organic Compounds Emissions Speciated for the SAPRC99 Chemical Mechanism (2007년 6월 수도권 오존모사 I - 광화학측정자료를 이용한 SAPRC99 화학종별 휘발성유기물질 배출량 입력자료 평가)

  • Kim, Soon-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.580-602
    • /
    • 2011
  • Volatile organic compound (VOC) emissions in the 2007 CAPSS (Clean Air Protection Supporting System) emissions inventory are chemically speciated for the SAPRC99 (Statewide Air Pollution Research Center 99) mechanism, following the Source Classification Code (SCC) matching method to borrow the U.S.EPA's chemical speciation profiles. CMAQ simulations with High-order Direct Decoupled Method (HDDM) are in turn applied to evaluate uncertainty in the method by comparing the simulated model VOC species to the observations in the Seoul Metropolitan Area (SMA) for a 2007 June episode. Simulations under-predicted ALK1 to ALK4 in SAPRC99 by a factor of 2 to 5 and over-predicted ALK5 by a factor of 7.5 while ARO1, ARO2, OLE1, and ethylene (ETH) are comparable to the observations, showing relative difference by 10 to 30%. OLE2 emissions are roughly 4 times overestimated. Emission rates for individual VOC model species are revised referring to the ratio of simulated to observed concentrations. Impact of the VOC emission changes on the overall ozone prediction was insignificant for the days of which 1-hr maximum ozone are lower than 100 ppb. However, simulations showed ozone difference by 5 to 10 ppb when high ozone above 120 ppb was observed in the vicinity of Seoul. This result suggests that evaluations on individual model VOC emissions be necessary to lead ozone control plans to the right direction. Moreover, the simulated ratios of ARO1 and ARO2 to $NO_x$ are roughly 50% lower than the observed ones, which imply that adjustment in $NO_x$ and VOC emission rates may be required to mimic the real VOC/$NO_x$ condition over the area.

Alternatives for Quantifying Wetland Carbon Emissions in the Community Land Model (CLM) for the Binbong Wetland, Korea.

  • Eva Rivas Pozo;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.413-413
    • /
    • 2023
  • Wetlands are a critical component of the global carbon cycle and are essential in mitigating climate change. Accurately quantifying wetland carbon emissions is crucial for understanding and predicting the impact of wetlands on the global carbon budget. The uncertainty quantifying carbon in wetlands may comes from the ecosystem's hydrological, biochemical, and microbiological variability. The Community Land Model is a sophisticated and flexible land surface model that offers several configuration options such as energy and water fluxes, vegetation dynamics, and biogeochemical cycling, necessitating careful consideration for the alternative configurations before model implementation to develop a practical model framework. We conducted a systematic literature review, analyzing the alternatives, focusing on the carbon stock pools configurations and the parameters with significant sensitivity for carbon quantification in wetlands. In addition, we evaluated the feasibility and availability of in situ observation data necessary for validating the different alternatives. This analysis identified the most suitable option for our study site, the Binbong Wetland, in Korea.

  • PDF

A Study of Optimized Operation for CO2 Emission and Aircraft Fuel Reduced Operation Procedures (온실가스배출 감소와 연료절감을 위한 최적 운용절차 방안에 관한 연구)

  • Hwang, Jeong-Hyun;Lee, Tae-Gwang;Hwang, Sa-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.62-70
    • /
    • 2013
  • As the aviation industry looks to the future, fuel saving and $CO_2$ emission reduction play a dominant role in meeting the business challenges presented by global financial uncertainty. The IATA and International Government effort to save fuels, and then save 4 billion gallons of fuel burned, while reducing $CO_2$ emissions by 34 million tons. The various reduction methods adapted airlines and airports. We focused on optimized flight operation procedures for saving fuel and reduction emission cases. IATA and Canada government research reports focused on four methods that Engine Core Washing, Portable Water Management, Single Engine Taxi, APU limit operation. Apply to domestic airlines fuel data, Engine Core washing was saving more than Twenty-four thousand tons $CO_2$ emissions.

Development of Estimation Methods of Pollutant Emissions from Railroad Diesel Rolling Stocks (철도디젤차량에서 배출되는 오염물질의 배출량 산정방법 개발)

  • 박덕신;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.539-553
    • /
    • 2004
  • Up to the present time, many methods to estimate emissions from a particular diesel engines have wholly depended on the quantity of diesel fuel consumed. Then, the recommended emission factors were normalized by fuel consumption, and further total activity was estimated by the total fuel consumed. One of main purposes in the study is newly to develop emission factors for the railroad diesel rolling stock (RDRS) and to estimate a total amount of major gaseous pollutants from the RDRS in Korea. Prior to develop a Korean mode emission factor. the emission factor from the USEPA was simply applied for comparative studies. When applying the USEPA emission factors, total exhaust emissions from the RDRS in Korea were estimated by 28,117tons of NOx, 2,832.3tons of CO, and 1,237.5tons of HC, etc in 2001. In this study, a emission factor for the RDRS, so called the KoRail mode (the Korean Railroad mode) has been developed on the basis of analyzing the driving pattern of the Gyeongbu-Line especially for the line-haul mode. Explicitly to make the site specific emission factors, many uncertainty problems concerning weighting factors for each power mode, limited emission test, incomplete data for RDRS, and other important input parameters were extensively examined. Total exhaust emissions by KoRail mode in Korea were estimated by 10,960tons of NOx, and 4,622tons of CO, and so on in the year of 2001. The emissions estimated by the USEPA mode were 2.6 times higher for NOx, and 1.6 times lower for CO than those by the KoRail mode. As a conclusion, based on the emission calculated from both the USEPA mode and the KoRail mode, the RDRS is considered as one of the significant mobile sources for major gaseous pollutants and thus management plans an(1 control strategies for the RDRS must be established to improve air quality near future in Korea.