본 연구는 GIS를 이용하여 미시적 수준에서 교통현상을 시뮬레이션 할 수 있는 미시적 수준의 교통모형을 설계 및 구현하는데 목적이 있다. 이를 위해 차량이 GIS 도로 중심선 자료를 차선, 이동속도 등이 반영된 도로 네트워크 자료로 인식하는 방법론을 개발하였으며, 운전자의 주행 행태를 반영하기 위해 환경인식모형, 차두시간분포모형, 차량추종모형 및 차로변경모형으로 행태모형을 설계 및 구현했다. 모형의 정확도 평가는 종로구의 자하문길을 대상으로 관측자료와 예측 자료를 비교하였으며, 그 결과 시간대별 이동 속도를 매우 정확하게 예측한 것을 확인할 수 있었다. 본 연구를 통해 구현된 GIS 기반의 미시적 수준의 교통모형은 교통 탄소 배출량 분석, 교통류 평가 및 도시기반시설 입지 계획등의 다양한 분야에 효과적으로 기여할 수 있을 것으로 판단된다.
The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.
Journal of Advanced Marine Engineering and Technology
/
제26권1호
/
pp.37-47
/
2002
Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.
Fluoroquinolones are the most common group of antibacterial agents currently used in the Korean aquaculture industry, and use of these agents has been increasing steadily. High performance liquid chromatography (HPLC) with fluorescence detection was used for the simultaneous determination of five fluoroquinolones in fish and shellfish: ofloxacin (OFL), pefloxacin (PEF), norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENRO). Fish and shellfish muscle was homogenized, and protein, lipid, and low molecular weight pigments were then excluded from the homogenate. The final eluates were analyzed by HPLC equipped with a Shiseido UG-120 type C18 reverse-phase column ($4.6{\times}250 mm$, $5{\mu}m$) and a fluorescence detector (excitation at 280 nm, emission at 450 nm). The mobile phase was 0.1 M phosphoric acid and acetonitrile solution (91:9, v/v) and tetrahydrofuran (THF) was added to it at a rate of 5 mL per a liter of the mobile phase. Adequate chromatography separation was obtained using the above method. Average recoveries of fortified samples at levels from 0.05 to 0.5 mg/kg were $72.3{\pm}2.5-84.5{\pm}1.2%$ for OFL, $82.7{\pm}3.3- 109.3{\pm}7.5%$ for NOR, $85.3{\pm}6.6-116.0{\pm}7.9%$ for PEF, $76.0{\pm}4.3-109.3{\pm}12.4%$ for CIP, and $78.7{\pm}5.9-100.0{\pm}9.8%$ for ENRO. The limit of detection of OFL was $5{\mu}g/L$, the others were $1{\mu}g/L$. We concluded that the new analytical method was suitable for the determination of fluoroquinolones in fish and shellfish.
The surface protein hemagglutinin (HA) mediates the attachment of influenza virus to host cells containing sialic acid and thus facilitates viral infection. Therefore, HA is considered as a good target for the development of diagnostic tools for influenza virus. Previously, we reported the isolation of single-stranded aptamers that can distinguish influenza subtype H1 from H5. In this study, we describe a method for the selective electrical detection of H1 using the isolated aptamer as a molecular probe. After immobilization of the aptamer on Si wafer, enzyme-linked immunosorbent assay (ELISA) and field emission scanning electron microscopy (FE-SEM) showed that the immobilized aptamer bound specifically to the H1 subtype but not to the H5 subtype. Assessment by cyclic voltammetry (CV) also demonstrated that the immobilized aptamer on the indium thin oxide-coated surface was specifically bound to the H1 subtype only, which was consistent with the ELISA and FE-SEM results. Further measurement of CV using various amounts of H1 subtype provided the detection limit of the immobilized aptamer, which showed that a nanomolar scale of target protein was sufficient to produce the signal. These results indicated that the selected aptamer can be an effective probe for distinguishing the subtypes of influenza viruses by monitoring current changes.
수용액 중의 fluorene 과 anthracene을 동시화 형광분광법을 이용하여 동시에 정량하는 방법에 대하여 연구하였다. 두 화합물 용액에서의 형광특성을 조사하였고, 화합물 혼합용액을 이용하여 동시화 형광스펙트럼을 측정할 때에 파장차이 (${\Delta}{\lambda}$)가 봉우리의 분리에 미치는 영향을 조사한 결과 ${\Delta}{\lambda}$가 50 nm일 때 가장 좋은 봉우리의 분리가 일어났다. 혼합 수용액으로 최적 ${\Delta}{\lambda}$에서 동시화 형광스펙트럼을 측정하여 검정곡선을 작성하였을 때 fluorene의 경우에는 $5.0{\times}10^{-8}M$에서 $1.0{\times}10^{-3}M$, anthracene의 경우에는 $5.0{\times}10^{-8}M$에서 $1.0{\times}10^{-3}M$까지 직선범위 가 성립하였다. Fluorene과 anthracene의 검출한계는 각각 $3.0{\times}10^{-9}M$과 $7.0{\times}10^{-9}M$이었다.
An automated carbonyl measurement system was constructed. Atmospheric carbonyl compounds were extracted onto DNPH containing collection solution while flowing through a glass coil. Each carbonyl species was separated on a HPLC column and quantified by UV absorption detector. Using this system, carbonyl compounds were continuously measured at the campus of Korea University in Seoul, Korea during June, 2005. Sampling resolution was 30 minutes and the detection limit of HCHO was 0.19 ppbv. Also, $\O_{3}$, it's precursors, and meteorological parameters were measured. The maximum, minimum, average, and median concentrations of HCHO during the whole experiment was 35.8 ppbv, 1.4 ppbv, 11.7 ppbv, and 9.3 ppbv respectively. Formaldehyde showed a distinct diurnal variation with a broad maximum around 13 $\sim$ 15, which was 1 $\sim$ 3 hours ahead of an ozone maximum. During a couple of days, however, HCHO concentrations were kept high through the night or increased concomitantly with NOx in the morning. These results imply that HCHO was mainly produced from the photochemical oxidation of VOCs, but local emission sources couldn't be ruled out. The differences between daily maximum and minimum of $O_{3}$ and HCHO were calculated for 11 days of June, when typical diurnal variations were observed for the two species. A strong positive correlation was found between $\Delta O_{3}$ and $\Delta HCHO$ and the average mole ratio of $\Delta HCHO$ to $\Delta O_{3}$ was 2.6. It indicates that formaldehyde played a key role in $\Delta O_{3}$ production as an indicator species in Metropolitan Seoul during June, 2005.
A europium (III)-sensitized, spectrofluorimetric (FL) method is presented for the determination of sparfloxacin (SPAR) using an anionic surfactant, sodium dodecyl benzene sulphonate (SDBS). The method is based on the strong fluorescence (FL) enhancement of SPAR after the addition of $Eu^{3+}$ ions as fluorescence probes. The experimental results indicated that the FL intensity of the SPAR-$Eu^{3+}$ system was enhanced markedly by SDBS. The maximum FL emission signal was obtained at about 615 nm when excited at 372 nm. The experimental conditions that affected the FL intensity of the SPAR-$Eu^{3+}$-SDBS system were optimized systematically. The enhanced FL intensity of the system exhibited a good linear relationship with the SPAR concentration over the range of $1.5{\times}10^{-9}-1.2{\times}10^{-7}mol\;L^{-1}$ with a correlation coefficient (r) of 0.9987. The limit of detection ($3{\delta}$) was $4.15{\times}10^{-10}mol\;L^{-1}$ with a relative standard deviation (RSD) of 1.65%. This method was successfully applied for the determination of SPAR in pharmaceuticals, and human serum and urine samples with higher sensitivity, wide dynamic range and better stability. The possible interaction mechanism of the system is also discussed in detail by ultraviolet absorption spectra and FL spectra.
$Tb^{+3}$과 $Eu^{+3}$ 이온의 특성 형광선의 세기가 TLC상에서 증폭되는 현상을 이용한 고감도의 미량분석법에 대하여 연구하였다. 수용액과 에탄올 용액상의 $Tb^{+3}$과 $Eu^{+3}$ 두 이온의 특성 형광선의 세기에 비하여 주어진 용액을 TLC로 점적하면 이온의 형광선의 세기가 더욱 증가하는 형광 증폭 현상을 이용하여 $Tb^{+3}$과 $Eu^{+3}$ 이온의 검출한계를 $10^6$배 이상 개선하였으며 이러한 형광 증폭 현상의 이론적인 배경으로 란탄이온 착물내의 리간드와 중심금속이온 사이의 energy-transfer mechanism을 설명하였다.
자동흐름분석법으로 lucigenin을 발광시약으로 이용하여 화학발광의 세기를 측정함으로써 수용액 중의 Cr(III)을 정량하는 방법에 대하여 연구하였다. pH, 시료의 주입 양과 속도, lucigenin의 농도 및 방출파장이 방출세기에 미치는 영향을 조사하였다. Lucigenin과 과산화수소의 화학발광 반응에서 Cr(III)를 첨가하였을 때 방출세기가 현저히 증가함을 관찰하였다. Cr(III) 이온 검정곡선의 직선감응범위와 검출한계는 들뜸 파장, pH 및 lucigenin과 과산화수소의 농도가 각각 473 nm, 12.8 및 1.0${\times}10^{-6}$M과 2.0M였을 때, 1.0${\times}10^{-6}$M∼1.0${\times}10^{-3}$M 및 5.2${\times}10^{-8}$M이었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.