• Title/Summary/Keyword: Emission gas

Search Result 3,481, Processing Time 0.033 seconds

A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine (선박용 디젤기관에 있어서 스크러버형 배기재순환 시스템의 배기배출물 특성에 관한 연구)

  • 임재근;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • The effect of exhaust gas recirculation(EGR) on the characteristics of exhaust gas emissions, and SFC are experimentally investigated by four-cylinder, four-cycle and direct injection marine diesel engine. In order to reduce the soot contents in the recirculated exhaust gas to intake system of the engines, a soot removal system of a cylinderical-type scrubber is specially designed and manufactured for the experimental system. (1) SFC is increased in downward convex curve style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (2) NOx emission is reduced in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (3) Soot emission is decreased in downward convex curve style with increasing excess air ratio, it is reduced with increasing EGR rate at the same excess air ratio. (4) CO emission is increased in nearly straight line style with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio. (5) HC emission is not constant tendency with increasing excess air ratio, it is increased with increasing EGR rate at the same excess air ratio.

  • PDF

Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels (기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향)

  • 박종범;최희명;이형승;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

Research of Natural Gas/Diesel Dual Fuel Vehicle (CRDI시스템을 갖는 천연가스/디젤 혼소차량의 개발에 대한 연구)

  • Lee, Sang-Min;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.13-18
    • /
    • 2012
  • This research is about the exhaust gas and driving performance test which are for CNG-Diesel dual fuel engine. The CNG-Diesel dual fuel engine converted from 2500cc diesel has two steps of injection systems; small amount of diesel is injected to mixture CNG in cylinder to ignite before CNG is injected into each intake manifold to form mixture. The amounts of output power and emission in duel fuel consumption were measured by engine dynamometer and exhaust gas analyzer. Over 90% of diesel consumption reduction, similar driving performance to current diesel engine and reduced emission on $CO_2$ and PM, respectively, were indicated through the measurements. The two steps of system were applied to vehicle to investigate exhaust gas characteristics and driving performance via NEDC mode and real driving test. Additional oxidation catalyst was applied to reduce emission on the test vehicle and the NEDC mode test showed the reduction of Co, $CO_2$, Pm and THC.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

Characteristics of Exhaust Gas Temperature and Harmful Emission During Cold Start Transient Operation in an SI Engine (가솔린엔진의 냉시동 천이구간에서 배출가스 온도 및 유해배출물 특성에 관한 연구)

  • Cho, Yong-Seok;Jeong, Dae-Chul;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1181-1187
    • /
    • 2006
  • Stringent regulations of exhaust emission from vehicles become a major issue in automotive industries. In SI engines, it is one of the crucial factor to reduce exhaust emissions during cold start in order to meet stringent regulations such as SULEV or EURO-4, because SI engines emit a large portion of total harmful exhaust compounds when they are cold. At early stages of cold start in gasoline engines, exhaust gas temperature plays a key role to improve three way catalyst by virtue of fast warmup. Therefore, this study focused on the increase of exhaust gas temperature under controls of engine operating parameters such as spark ignition timing, valve overlap by virtue of intake VVT and catalyst heating function. Furthermore, effects on harmful emission due to these parameters are also investigated. Experiments showed that retarded spark ignition timings and increased valve overlap may be helpful to increase exhaust gas temperature. It was also found that $NO_x$ was decreased with increased valve overlap. This study also showed that sudden changes in ISA and amount of fuel due to the deactivation of catalyst heating function cause temporal increase of harmful emissions.

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • Oh, Jung-Keun;Ju, Byeong-Kwon;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF

A Comparison Study of Forecasting Time Series Models for the Harmful Gas Emission (유해가스 배출량에 대한 시계열 예측 모형의 비교연구)

  • Jang, Moonsoo;Heo, Yoseob;Chung, Hyunsang;Park, Soyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2021
  • With global warming and pollution problems, accurate forecasting of the harmful gases would be an essential alarm in our life. In this paper, we forecast the emission of the five gases(SOx, NO2, NH3, H2S, CH4) using the time series model of ARIMA, the learning algorithms of Random forest, and LSTM. We find that the gas emission data depends on the short-term memory and behaves like a random walk. As a result, we compare the RMSE, MAE, and MAPE as the measure of the prediction performance under the same conditions given to three models. We find that ARIMA forecasts the gas emissions more precisely than the other two learning-based methods. Besides, the ARIMA model is more suitable for the real-time forecasts of gas emissions because it is faster for modeling than the two learning algorithms.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

UV emission characteristics of Ne+$N_2$ gas-mixture discharges in AC Plasma Display Panel

  • Baek, Byung-Jong;Hong, Sang-Min;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.586-589
    • /
    • 2002
  • The Ultra Violet(UV) emission characteristics of Neon + Nitrogen gas-mixture discharge was investigated in AC plasma display panel. The firing voltage of Ne+$N_2$ gas-mixture discharge increased with increasing nitrogen concentration. The UV intensity emitted from the gas discharge also increased with increasing nitrogen concentration. The UV efficiency increase with increasing $N_2$ partial pressure at low $N_2$ concentration, and then UV efficiency is saturated at high $N_2$ concentration.

  • PDF