• Title/Summary/Keyword: Emission characteristics (EC)

Search Result 31, Processing Time 0.028 seconds

Effect of Salt Concentration on Methane Emission in a Coastal Reclaimed Paddy Soil Condition: Pot Test (간척지 논 토양의 염 농도가 메탄 배출에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Jeong, Seung-Tak;Kim, Gun-Yeob;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.252-259
    • /
    • 2013
  • BACKGROUND: Salt accumulation in coastal reclaimed soil can decrease plant growth and productivity, which could lead to considerable variation of methane($CH_4$) emission in a rice paddy. The objective of this study was to evaluate the effect of salt concentration on $CH_4$ emission in a coastal reclaimed soil. METHODS AND RESULTS: The effect of salt concentration on $CH_4$ emission and rice growth characteristics was studied by pot test, which packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Electrical conductivity(EC) of each treatment was controlled by 0.98, 2.25, 5.05 and 9.48 dS/m and $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. The $CH_4$ emission rate was significantly decreased with increase of salt accumulation, but total $CH_4$ flux in EC 5.50 dS/m treatment was lower than those of EC 9.48 dS/m treatment. It seems because of higher content of water soluble $SO{_4}^{2-}$ in EC 5.50 dS/m treatment than those of EC 9.48 dS/m treatment. Rice growth and grain yield were significantly decreased with increase of salt accumulation. Soil properties, especially EC and pH were negatively correlated with $CH_4$ flux, while rice growth characteristics like plant height and tiller number show significantly positive correlation with $CH_4$ flux. CONCLUSION(S): Conclusively, salt accumulation significantly decreased $CH_4$ flux in a rice paddy, which could be useful information for evaluating $CH_4$ flux in reclaimed area in Korea.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine (GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, H.G.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

Combustion and Exhaust Emission Characteristics of Bio-Ethanol Fuel(E100) in SI Engine (SI 엔진에서 바이오에탄올 연료(E100)의 연소 및 배기특성)

  • Ha, Sung-Yong;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.582-588
    • /
    • 2008
  • An experimental investigation was conducted to investigate the effect of Bio-ethanol fuel on the engine performance and exhaust emission characteristics under various engine operating conditions. To investigate the effect of bio-ethanol fuel, the commercial 1.6L SI engine equipped with 4 cylinder was tested on EC dynamometer. The engine performance including brake torque, brake specific fuel consumption, and barke specific energy consumption of bio-ethanol fuel was compared to those obtained by pure gasoline. Furthermore, the exhaust emissions were analyzed in terms of regulated exhaust emissions such as unburned hydrocarbon, oxides of nitrogen, and carbon monoxide.Result of this work shows that the effect of blending of ethanol to gasoline caused drastic decrease of emissions under various operating conditions. Also, improved engine performance such as brake torque and brake power were indicated for bio-ethanol fuel.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

The Study of PM2.5 and Exhaust Emission Characteristics in the Motorcycles according to Various Lubricants (윤활유 종류에 따른 이륜자동차 PM2.5 및 배출가스 특성 연구)

  • Lim, Yunsung;Lee, Jongtae;Park, Jangmin;Kim, Jeongsoo;Lee, Janghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2013
  • Because increased food delivery service and quick delivery service using motorcycle, registration numbers of motorcycles were sharply increased and it could contribute on worsening air quality. In this study, two models(50cc, 125cc) of motorcycle were tested by using three types of engine oil. Two motorcycles were tested with CVS-40 mode for emission characteristics such as CO, THC, NOx, Elemental Carbon(EC), Organic Carbon(OC), sulfate, soot and SOF(soluble organic fraction). Result of according to three types of lubricants which included phosphorus, sulfate ash impacted to particle matters so "C" lubricants is more higher PM than "A", "B" lubricants in this research.

Combustion characteristics of DI diesel engine according to various timings of split injection (분할 분사시기 변화에 따른 직분식 디젤엔진의 연소 특성)

  • Youn, In-Mo;Roh, Hyun-Gu;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.104-109
    • /
    • 2005
  • This paper describes the effect of the split injection on combustion and emission characteristics in a common rail diesel engine at various operating conditions. The combustion pressures and exhaust emissions such as $NO_x$ and soot were measured at various split injection timings. The experimental apparatus of this study is composed of 4 cylinder engine installed with piezoelectric pressure sensor, EC dynamometer, and exhaust gas analyzer for the measurement of $NO_x$, CO, HC and soot emissions. Results show that the split injection has a great effect on reducing the rapid premixed combustion and $NO_x$ emissions.

  • PDF

A Study on Combustion Characteristics of Methyl/Ethyl Butyrate blend (메틸/에틸 부틸레이트 혼합연료의 연소특성에 관한 연구)

  • Kim, Sungwoo;Lee, Minho;Kim, Jeonghwan;Min, Kyoung-Il;Kim, Kiho;Yim, Eui-Soon;Jung, Choong Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • This study is a part of the project that investigates a possibility of using methyl/ethyl butyrate as an alternative material of MTBE. To investigate characteristics of the two materials, a 2.0L 4-cylinders SI engine that was coupled to an 160kw EC engine dynamometer was used and operated several conditions. Two exhaust gas analyzer was used to measure CO, NOx and THC of after and before of a catalyst. Also, to compare combustion characteristics of the fuels a combustion analyzer was used for measuring pressure of inside of a cylinder. The results show no special difference between MTBE and the two materials from the emission and combustion characteristics aspect.

  • PDF

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

A Experimental study on combustion and exhaust characteristics by intake composition in SI gasoline engine (SI가솔린 기관에서 흡기조성에 따른 연소 및 배기특성에 관한 실험적 연구)

  • Choi, Il-Dong;Kim, Chi-Won;Yoon, Chang-Sik;Kim, Gi-Bok;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.56-66
    • /
    • 2017
  • In this experimental study, it is designed and used the test engine bed which is installed with the exhaust gas recirculation, and in addition to equipped using by oxygen adder. It has been tested and analyzed the combustion and emission characteristics, cycle variability and engine performance by controlling the oxygen volume fraction, EGR rate, engine speed and equivalence ratio.