• Title/Summary/Keyword: Emission Wavelength

Search Result 625, Processing Time 0.03 seconds

Effect of Si-doping on the luminescence properties of InGaN/GaN green LED with graded short-period superlattice

  • Cho, Il-Wook;Lee, Dong Hyun;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.1-280.1
    • /
    • 2016
  • Generally InGaN/GaN green light emitting diode (LED) exhibits the low quantum efficiency (QE) due to the large lattice mismatch between InGaN and GaN. The QE of InGaN-based multiple quantum wells (MQWs) is drastically decreased when an emission wavelength shifts from blue to green wavelength, so called "green gap". The "green gap" has been explained by quantum confined Stark effect (QCSE) caused by a large lattice mismatch. In order to improve the QE of green LED, undoped graded short-period InGaN/GaN superlattice (GSL) and Si-doped GSL (SiGSL) structures below the 5-period InGaN/GaN MQWs were grown on the patterned sapphire substrates. The luminescence properties of InGaN/GaN green LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensity of SiGSL sample measured at 10 K shows stronger about 1.3 times compared to that of undoped GSL sample, and the PL peak wavelength at 10 K appears at 532 and 525 nm for SiGSL and undoped GSL, respectively. Furthermore, the PL decay of SiGSL measured at 10 K becomes faster than that of undoped GSL. The faster decay for SiGSL is attributed to the increased wavefunction overlap between electron and hole due to the screening of piezoelectric field by doped carriers. These PL and TRPL results indicate that the QE of InGaN/GaN green LED with GSL structure can be improved by Si-doping.

  • PDF

Simultaneous Determination of Fluorene and Anthracene by Synchronous Spectrofluoremetry (동시화 형광분광법에 의한 fluorene과 anthracene의 동시정량)

  • Lee, Sang Hak;Han, Yung Ji;Son, Bum Mok;Choi, Jong Ha;Kim, Chang Jin
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.393-398
    • /
    • 2002
  • A method to determine simultaneously fluorene and anthracene in aqueous solution by synchronous fluorescence spectrometry has been studied. The emission characteristics and optimum wavelength interval (${\Delta}{\lambda}$) for synchronous spectra of fluorene and anthracene in aqueous solution were investigated. The optimum wavelength interval (${\Delta}{\lambda}$) was found to be 50 nm. The calibration curve for fluorene and anthracene in the synthetic mixture solution of both compounds was linear over the range from $5.0{\times}10^{-8}M$ to $1.0{\times}10^{-3}M$ and from $5.0{\times}10^{-8}M$ to $1.0{\times}10^{-3}M$ for fluorene and anthracene, respectively. The detection limit was $3.0{\times}10^{-9}M$ and $7.0{\times}10^{-9}M$, for fluorene and anthracene, respectively under the optimal wavelength interval.

Development of a Sensor Fusion System for Visible Ray and Infrared (적외선 및 가시광선의 센서 융합시스템의 개발)

  • Kim, Dae-Won;Kim, Mo-Gon;Nam, Dong-Hwan;Jung, Soon-Ki;Lim, Soon-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2000
  • Every object emits some energy from its surface. The emission energy forms surface heat distribution which we can capture by using an infrared thermal imager. The infrared thermal image may include valuable information regarding to the subsurface anomaly of the object. Since a thermal image reflects surface clutter and subsurface anomaly, we have difficulty in extracting the information on the subsurface anomaly only with thermal images taken under a wavelength. Thus, we use visible wavelength images of the object surface to remove exterior clutter. We, therefore in this paper, visualize the infrared image for overlaying it with a visible wavelength image. First, we make an interpolated image from two ordinary images taken from both sides of an infrared sensor. Next, we overlay the intermediate image with an infrared image taken from the infrared camera. The technique suggested in this paper can be utilized for analyzing the infrared images on non-destructive inspection against disaster and for safety.

  • PDF

Fabrication of an Optical Fiber Amplifier Using Long-period Fiber Gratings Formed by Periodically Arrayed Metal Wire (금속선의 주기적 배열로 유도된 장주기 격자를 이용한 이득 평탄화된 광섬유 증폭기 제작)

  • Sohn, Kyung-Rak;Hwang, Woong;Shim, June-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.833-837
    • /
    • 2007
  • In this study, we have fabricated a gain flattened erbium-doped optical fiber amplifier. Gain flattening filters were realized by the strain-induced long period fiber gratings, which are made of periodically arrayed metal wires. Using the filter of $550{\mu}m$ period, spontaneous emission amplified at C-band wavelength by a 980nm pumping laser was flattened within 1dB of gain ripple. The performance of the simultaneous multi channel amplification was measured using a fabry-perot laser diode. Amplification ratio was above 20dB. This amplifier can be applied to the long distance transmission system based on a wavelength division multiplexing for boosting an attenuated signal.

Inorganic Nanoparticles for Near-infrared-II Fluorescence Imaging (근적외선-II 형광 이미징을 위한 무기 나노입자)

  • Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2022
  • Fluorescence imaging is widely used to image cells or small animals due to its high temporal and spatial resolution. Because conventional fluorescence imaging uses visible light, the penetration depth of light within the tissue is low, phototoxicity may occur due to visible light, and the detection sensitivity is lowered due to interference by background autofluorescence. In order to overcome this limitation, long-wavelength light should be used, and fluorescence imaging using near-infrared-I (NIR-I) in the region of 700~900 nm has been developed. To further improve imaging quality, researchers are interested in using a longer wavelength light, near-infrared-II (NIR-II) ranging from 1000 to 1700 nm. In the NIR-II region, light scattering is further minimized, and the penetration depth of light in the tissue is improved up to about 10 mm, and autofluorescence of the tissue is reduced, enabling high sensitivity and resolution fluorescence imaging. In this review, among various NIR-II fluorescence imaging probes, inorganic nanoparticle-based probes with excellent photostability and easily tunable emission wavelength were described, focusing on single-walled carbon nanotubes, quantum dots, and lanthanide nanoparticles.

Detection of short-term flux variability and intraday variability in polarized emission at millimeter-wavelength from S5 0716+714

  • Lee, Jeewon;Sohn, Bong Won;Byun, Do-Young;Lee, Jeong Ae;Lee, Sang Sung;Kang, Sincheol;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.33.1-33.1
    • /
    • 2016
  • We report detection of short-term flux variability in multi-epoch observations and intraday variability in polarized emission at millimeter-wavelength from S5 0716+714 using Korean VLBI Network (KVN) radio telescopes. Over the whole observation epochs, the source shows significant inter-month variations at K- and Q-band with modulation indices of 19% at K-band and 36% at Q-band. In each epoch, the source shows monotonic flux increase in Epoch 1 and 3, and monotonic flux decrease in Epoch 2 and 4. We found an inverted spectrum with mean spectral indices of -0.57 in Epoch 1 and -0.15 in Epoch. On the contrary, we found relatively steep indices of 0.24 and 0.17 in Epoch 2 and Epoch 4, respectively. In the study of intraday variability of polarization, we found significant variations in the degree of linear polarization at 86 GHz, and in polarization angle at 43 and 86 GHz during ~10 h. The spectrum of the source is quite flat with spectral indices of -0.07 to 0.07 at 22-43 GHz and -0.23 to 0.04 at 43-86 GHz. The measured degree of the linear polarization ranges from 2.3% to 3.3 % at 22 GHz, from 0.9% to 2.2 % at 43 GHz and from 0.4 % to 4.0 % at 86 GHz, yielding prominent variations at 86 GHz over 4-5 h. The linear polarization angle is in the range of 4 to $12^{\circ}$ at 22 GHz, -39 to $81^{\circ}$ at 43 GHz, and 66 to 119 at 86 GHz with a maximum rotation of $110^{\circ}$ at 43 GHz over ~4 h. We estimated the Faraday rotation measures (RM) ranging from -9200 to 6300 rad m-2 between 22 and 43 GHz, and from -71000 to 7300 rad m-2 between 43 and 86 GHz, respectively. The frequency dependency of RM was investigated, yielding a mean power-law index, a, of 2.0. This implies that the polarized emission from S5 0716+714 at 22-86 GHz moves through a Faraday screen in or near the jet of the source.

  • PDF

Fabrication and Characterization of High Performance Green OLEDs using $Alq_3$-C545T Systems ($Alq_3$-C545T시스템을 이용한 고성능 녹색 유기발광다이오드의 제작과 특성 평가)

  • Jang Ji-Geun;Kim Hee-Won;Shin Se-Jin;Kang Eui-Jung;Ahn Jong-Myong;Lim Yong-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.51-55
    • /
    • 2006
  • The green emitting high performance OLEDs using the $Alq_3$-C545T fluorescent system have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, green color emission layer was deposited using $Alq_3$ as a host material and C-545T[10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]/benzopyrano[6,7,8-ij]-quinolizin-11-one] as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:C545T/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Green OLEDs fabricated in our experiments showed the color coordinate of CIE(0.29, 0.65) and the maximum power efficiency of 7.3 lm/W at 12 V with the peak emission wavelength of 521 nm.

  • PDF

MIRIS: Science Programs

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwangil;Pyo, Jeonghyun;Lee, Dae-Hee;Park, Youngsik;Ree, Chang Hee;Moon, Bongkon;Park, Sung-Joon;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Cha, Sang-Mok;Lee, Sungho;Yuk, In-Soo;Ahn, Kyungjin;Cho, Jungyeon;Lee, Hyung Mok;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • The main payload of Science and Technology Satellite 3 (STSAT-3), Multipurpose InfraRed Imaging System (MIRIS) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. ${\times}$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide-band imaging and the Paschen-${\alpha}$ emission line survey. After the calibration of MIRIS in our laboratory, MIRIS has been delivered to SaTReC and successfully assembled into the STSAT-3. The main purposes of MIRIS are to perform the observation of Cosmic Infrared Background (CIB) at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-${\alpha}$ emission line. CIB observation enables us to reveal the nature of degree-scale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The MIRIS will continuously monitor the seasonal variation of the zodiacal light towards the both north and south ecliptic poles for the purpose of calibration as well as the effective removal of zodiacal light. The Pashen-${\alpha}$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

MIRIS Science Missions

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwang-Il;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Nam, Uk-Won;Pyo, Jeong-Hyun;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Park, Jang-Hyun;Lee, Duk-Hang;Lee, Sung-Ho;Yuk, In-Soo;Ahn, Kyung-Jin;Cho, Jung-Yeon;Lee, Hyung-Mok;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.26.4-27
    • /
    • 2010
  • The main payload of STSAT-3 (Science and Technology Satellite 3), MIRIS (Multipurpose InfraRed Imaging System) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument, which is being developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. $\times$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide field imaging and the emission line survey. The main purposes of MIRIS are to perform the Cosmic Infrared Background (CIB) observation at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-$\alpha$ emission line. CIB observation enables us to reveal the nature of degreescale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The Pashen-$\alpha$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

Emission Properties of Europium Complex Utilizing Multilayer Quantum-well Str by Vacuum Vapor Deposition Method (Europium Complex를 이용하여 저작한 다층구조의 발광 특성)

  • Lee, Sang-Pil;Kim, Ok-Byoung;Lee, Han-Sung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1747-1749
    • /
    • 1999
  • Organic electroluminescent devices (OLEDs) have received a great deal of attention due to their potential application as full-color displays. Europium complexes are known as excellent red color-emitting materials for OLEDs since they show intense photoluminescence at around 610 nm with a sharp spectral bandwidth. In this study, triple-layer and multiple quantum-well structures consisting of Eu$(TTA)_3$(bpy) complex well layer sandwiched triphenyldiamine derivative (TPD) layers were fabricated and their photoluminescent characteristics were investigated. Sharp emission at the wavelength of 615 nm has been observed from the triple-layer and multiple quantum-well structures containing Eu complex. Details on the electrical properties of these structures will be also discussed.

  • PDF