• Title/Summary/Keyword: Emission Path

Search Result 107, Processing Time 0.027 seconds

Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6 (GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사)

  • An, Jung-Su;Lee, Chang-Lae;Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.571-575
    • /
    • 2016
  • Monte Carlo simulations are widely used as the most accurate technique for dose calculation in radiation therapy. In this paper, the GATE6(Geant4 Application for Tomographic Emission ver.6) code was employed to calculate the dosimetric performance of the photon beams from a linear accelerator(LINAC). The treatment head of a Varian 21EX Clinac was modeled including the major geometric structures within the beam path such as a target, a primary collimator, a flattening filter, a ion chamber, and jaws. The 6 MV photon spectra were characterized in a standard $10{\times}10cm^2$ field at 100 cm source-to-surface distance(SSD) and subsequent dose estimations were made in a water phantom. The measurements of percentage depth dose and dose profiles were performed with 3D water phantom and the simulated data was compared to measured reference data. The simulated results agreed very well with the measured data. It has been found that the GATE6 code is an effective tool for dose optimization in radiotherapy applications.

Determination of Thermoluminescence Properties of MgB4O7 Doped with Dy3+, La3+ and Ho3+ for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy3+, La3+ 그리고 Ho3+이 도핑된 MgB4O7의 열 발광 특성 분석)

  • Park, Jinu;Kim, Nakyung;Choi, Jiwoon;Koh, Jaehyuk;Chin, Hee Sik;Jung, Duck Hyeong;Shin, Byungha
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.9-13
    • /
    • 2022
  • Bullets flying with a light from the back are called "tracers". Tracers are ignited by the combustion gas of the propellant and emit bright light that allows the shooter to visually trace the flight path. Therefore, tracers mark the firing point for allies to assist shooters to hit target quickly and accurately. Conventional tracers are constructed with a mixture of an oxidizing agent, raw metal, and organic fuel. Upon ignition, the inside of the gun can be easily contaminated by the by-products, which can lead to firearm failure during long-term shooting. Moreover, there is a fire risk such as forest fires due to residual flames at impact site. Therefore, it is necessary to develop non-combustion type luminous material; however, this material must still use the heat generated from the propellant, so-called "thermoluminescence (TL)". This study aims to compare the TL emission of Dy3+, La3+ and Ho3+ doped MgB4O7 phosphors prepared by solid state reaction. The crystal structures of samples were determined by X-ray diffraction and matched with the standard pattern of MgB4O7. Luminescence of various doses (200 ~ 15,000 Gy) of gamma irradiated Dy3+, La3+ and Ho3+ (at different concentrations of 5, 10, 15 and 20 %) doped MgB4O7 were recorded using a luminance/color meter. The intensity of TL yellowish (CIE x = 0.401 ~ 0.486, y = 0.410 ~ 0.488) emission became stronger as the temperature increased and the total gamma-ray dose increased.

A Quantitative Study of the Effects of a Price Collar in the Korea Emissions Trading System on Emissions and Costs (배출권거래제 가격상하한제가 배출량 및 감축비용에 미치는 영향에 대한 정량적 연구)

  • Bae, Kyungeun;Yoo, Taejoung;Ahn, Young-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.261-290
    • /
    • 2022
  • Although market stabilization measures have been triggered in the K-ETS, carbon price is still under uncertainty. Considering Korea's 2030 enhanced reduction target announced in October 2021, it is crucial to have practical stabilization measures to appropriately deal with price uncertainty. This study examines the quantitative effects of a price collar, which is considered as a means of alleviating price uncertainty, on expected cumulative emissions and abatement costs. There are three main scenarios: carbon tax, emissions trading system, and emissions trading system with a price collar. Monte Carlo simulation was conducted to reflect uncertainty in emission. There are several results as follows: 1) In a price collar, domestic emission target is likely to be achieved with a lower expected abatement cost than other scenarios. In addition, there is a small amount of excess emissions in this research and it would be not critical(0.1% excess than target); 2) Prohibiting banking increases the expected abatement cost. This is because firms can not intertemporally reallocate allowances to match the firm's optimal emissions path; 3) With the adoption of a price collar, government's net revenue can be positive even if the government's purchase volume of emissions allowances is more than sales volume. This is because the government sells them at price ceiling and purchases them at price floor.

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

Interference Cancellation On-Channel Regenerative Repeater Laboratory Test for ATSC Terrestrial Broadcasting (ATSC 지상파 방송을 위한 간섭제거 동일 채널 재생 중계기 성능평가)

  • Kim, Yong-Seok;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • This paper presents and analyzes laboratory test results of Interference Cancellation Digital On Channel Regenerative Repeater(IC-DOCR) to broadcast digital television signals in the Advanced Television Systems Committee(ATSC) transmission systems using single frequency networks(SFN). IC-DOCR laboratory test is classified to receiver test, transmitter test, and feedback interference cancellation test. The receiver part includes random noise, single echo, multi-path ensembles, and adjacent channel interference test. The transmitter part includes out-of channel emission, equality of transmitting signal, and phase noise test. By the laboratory test, the receiver part of the IC-DOCR eliminates 28dB of feedback signal higher than the received signal and has 17.8dB at TOV(Threshold Of Visibility) under random noise environment. Also, the transmitter part satisfies the specification of US FCC(Federal Communications Commission) as well as maintains good output signal quality for guaranteeing more than SNR 30dB.

Encoding of sentences appearing in Cho Ji-Hoon's poem "White night"

  • Park, In-Kwa
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • This study was initiated with the aim of suggesting a further step in the program of literary therapy by revealing the mechanism by which the body heals through the discharge of neural network codes. Sentence is encoded as neural signals in our body as it is being read. If the neural networks in the human body are activated and created, the code in which the neural networks are encoded is a code composed of sentences. That is, Sentence is a code. And if the Sentence connects to the human body again and activates the human neural networks, it can be said that Sentence is encoded. At this time, the relation of "neural network codes = Sentence codes" is established. In other words, human narrative and literary narratives are the mediums that convey the same kinds of neural network codes. Cho Ji-Hoon's Poem "White Night" draws sadness through the path of loneliness in 1strophe. Through the Sentence of Loneliness, it activates neural network codes of sadness. 2strophe for the 'pure white snow' is the encoding of the Sentence. In 3strophe, the sentence for 'sadness' is encoded. This flow causes a healing mechanism in this Poem, because the neural network codes about the loneliness, sadness, and eyes of the human body are passed to the other. Here, the other is "White Night". In the future, it is expected that more effective healing results will be obtained if a literary therapy program on the encoding of the sentence of Cho Ji-Hoon's Poem is performed in the future.

Combustion Characteristics of Coal-Fired Boiler Depending on the Variations in Combustion Air Supply Method (미분탄 보일러의 연소용 공기공급 변화에 따른 노내 연소상태 해석)

  • Seo, San-Il;Park, Ho-Young;Kang, Dong-Soo;Jeong, Dong-Hae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • 3-D CFD(Computational Fluid Dynamics) work were carried out to investigate the combustion characteristics in a boiler depending on the variations in air supply condition. For the gas temperature, $O_2$, NO, SOx at the outlet of economizer, the predicted values were been compared with the measured data. With the verified CFD model, the effects of air flow rates through SOFA(Separated Over Fire Air) and CCOFA(Closed Coupled Over Fire Air) on the combustion behavior in a boiler were simulated, and the distributions of NOx and gas temperature were mainly compared each other. The change in SOFA air flow rate gave the more sensitive effect on NOx than that in CCOFA. The distributions of gas temperature at convection path are differed with the changes in SOFA and CCOFA flow rate, so the combustion modification such as yaw anlge adjustment are required to get an enhanced gas temperature distribution.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

Comparison of ADAM's (Asian Dust Aerosol Model) Results with Observed PM10 Data (황사농도 단기예측모델의 PM10 농도와 실측 PM10 농도의 비교 - 2006년 4월 7~9일 황사 현상에 대해 -)

  • Cho, Changbum;Chun, Youngsin;Ku, Bonyang;Park, Soon-Ung;Lee, Sang-Sam;Chung, Yun-Ang
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.87-99
    • /
    • 2007
  • Simulation results of Asian Dust Aerosol Model (ADAM) for the period of April 7-9, 2006 were analyzed, comparing with observed PM10 data. ADAM simulated around ten times lower than on-site PM10 concentration in the source regions: Zhurihe, Tongliao, Yushe, Dalian and Huimin. As the result of this low concentration, transported amounts of Asian Dust were under-estimated as well. In order to quantify a forecasting accuracy, Bias and RMSE were calculated. Even though remarkably negative Biases and high RMSEs were observed, ADAM simulation had followed well up the time of dust outbreak and a transported path. However, the emission process to generate dust from source regions requires a great enhancement. The PM10 concentration at the surface reached up to $2,300{\mu}gm^{-3}$ at Baeknyoungdo and Seoul (Mt. Gwanak), up to $1,750{\mu}gm^{-3}$ at KGAWO about 18:00 LST in April 8, respectively; however, ADAM did not simulate the same result on its second peak. It is considered that traveling Asian dust might have been lagged over the Korean peninsula by the blocking of surface high pressure. Moreover, the current RDAPS's 30 km grid resolution (which ADAM adopts as the meteorological input data) might not adequately represent small-scale atmospheric motions below planetary boundary layer.

18FDG Synthesis and Supply: a Journey from Existing Centralized to Future Decentralized Models

  • uz Zaman, Maseeh;Fatima, Nosheen;Sajjad, Zafar;Zaman, Unaiza;Tahseen, Rabia;Zaman, Areeba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10057-10059
    • /
    • 2015
  • Positron emission tomography (PET) as the functional component of current hybrid imaging (like PET/CT or PET/MRI) seems to dominate the horizon of medical imaging in coming decades. $^{18}$Flourodeoxyglucose ($^{18}FDG$) is the most commonly used probe in oncology and also in cardiology and neurology around the globe. However, the major capital cost and exorbitant running expenditure of low to medium energy cyclotrons (about 20 MeV) and radiochemistry units are the seminal reasons of low number of cyclotrons but mushroom growth pattern of PET scanners. This fact and longer half-life of $^{18}F$ (110 minutes) have paved the path of a centralized model in which $^{18}FDG$ is produced by commercial PET radiopharmacies and the finished product (multi-dose vial with tungsten shielding) is dispensed to customers having only PET scanners. This indeed reduced the cost but has limitations of dependence upon timely arrival of daily shipments as delay caused by any reason results in cancellation or rescheduling of the PET procedures. In recent years, industry and academia have taken a step forward by producing low energy, table top cyclotrons with compact and automated radiochemistry units (Lab-on-Chip). This decentralized strategy enables the users to produce on-demand doses of PET probe themselves at reasonably low cost using an automated and user-friendly technology. This technological development would indeed provide a real impetus to the availability of complete set up of PET based molecular imaging at an affordable cost to the developing countries.