• Title/Summary/Keyword: Emergent plant

Search Result 64, Processing Time 0.025 seconds

Assessment of genetic diversity and distance of three Cicuta virosa populations in South Korea

  • Nam, Bo Eun;Kim, Jae Geun;Shin, Cha Jeong
    • Journal of Ecology and Environment
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • Cicuta virosa L. (Apiaceae) is a perennial emergent plant designated as an endangered species in South Korea. According to the former records, only four natural habitats remain in South Korea. A former study suggested that three of four populations (Pyeongchang: PC, Hoengseong: HS, Gunsan: GS) would be classified as different ecotypes based on their different morphological characteristics and life cycle under different environmental conditions. To evaluate this suggestion, we estimated genetic diversity in each population and distance among three populations by random amplification of polymorphic DNA. Seven random primers generated a total of 61 different banding positions, 36 (59%) of them were polymorphic. Nei's gene diversity and the Shannon diversity index increased in the order of PC < HS < GS, which is the same order of population size. In the two-dimensional (2D) plot of first two principal components in principal component analysis with the presence of 61 loci, individuals could be grouped as three populations easily (proportion of variance = 0.6125). Nei's genetic distance for the three populations showed the same tendency with the geographical distance within three populations. And it is also similar to the result of discriminant analysis with the morphological or life-cycle factors from the previous study. From the results, we concluded that three different populations of C. virosa should be classified as ecotypes based on not only morphology and phenology but genetic differences in terms of diversity and distance as well.

Multimedia Expert System for a Nuclear Power Plant Accident diagnosis using a Fuzzy Inference Method (퍼지 추론 방법을 이용한 원자력 사고진단 시스템을 위한 멀티미디어 전문가 시스템)

  • Lee, Sang-Beom;Lee, Seong-Ju;Lee, Mal-Rye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2001
  • The huge and complicated plants such as nuclear power stations are likely to cause the operators to make mistakes due to a variety of inexplicable reasons and symptoms in case of emergency. Thats why the prevention system assisting the operators is being developed for. First of all. I suggest an improved fuzzy diagnosis. Secondly. I want to demonstrate that a classification system of nuclear plants accident investigating the causes of accidents foresees possible problems. and maintains the reliability of the diagnostic reports in spite of improper working in part. In the event of emergency in a nuclear plant, a lot of operational steps enable the operators to find out what caused the problems based on an emergent operating plan. Our system is able to classify their types within twenty to thirty seconds. As so, we expect the system to put don the accidents right after the rapid detection of the damage control-method concerned.

  • PDF

Treatment Efficiency of a Surface - Flow Wetland System Constructed on Floodplain (고수부지활용 수질정화 자유수면 인공습지의 초기처리수준)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a surface-flow constructed wetland system (30 meter in length and 10 meter in width) over one year after its establishment on a floodplain of a stream. Cattails (Typha angustiflora) grown on pots were transplanted on one half of its area from inlets and reeds (Phragmites australis) on another half from an outlet. Effluent discharged from a secondary-level treatment plant was funneled into the system. The stems of cattails and reeds emerging in April 2001 grew up to 165.9 cm and 95.3 cm, respectively until July 2001. The number of stems of cattails arid reeds in July 2001 increased by 65% and 100%, respectively, compared with that just after their planting. The growth of cattails was better than that of reeds during study period. The removal rates for SS, $BOD_5$, T-N and T-P was 33%, 43%, 31%, and 51%, respectively. The system was inundated seven times by storms over the monitoring period, which disturbed its environment and led to its lower treatment rates. The increase of SS concentration in effluent after inundation of the system was attributed to the falls of soil particles onto its water surface, which had been attached to the emergent plants by floods. Purification rates for T-N were relatively low for the period of late fall through winter until early spring due to lower water temperature which may have retarded microbial nitrification and denitrification mechanisms. Reduction in T-P concentration during fall and winter was relatively higher than that during summer and spring, which may have resulted from no system perturbations by floods and heavy storms during fall and winter.

  • PDF

First record of Myriophyllum oguraense Miki (Haloragaceae) in Korea (한반도 미기록식물: 긴동아물수세미)

  • Choi, Hyeok Jae;Jang, Ju-Eun;Cheong, Seon-Woo;Shiga, Takashi
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.2
    • /
    • pp.77-80
    • /
    • 2014
  • Here we report a previously unrecorded species of Korean Myriophyllum L. (Haloragaceae). This taxon, M. oguraense Miki has been regarded as a Japanese endemic for some 60 years. Myriophyllum oguraense and its closely related M. verticillatum L. share the characteristic of having pectinate emergent leaves that are similar in shape to, but much smaller than, the submerged leaves. However, the primary characteristic that differentiates these taxa is the turion shape (club shaped in M. verticillatum and linear in M. oguraense). The common name, 'Gin-dong-a-mul-su-sae-mi' was also newly given considering its characteristic turion shape. Photographs and a key to Korean Myriophyllum species are provided in addition to complete descriptions including information on nomenclatural types, distributions and specimens examined.

Physiological and Structural Damages in Acorus calamus var. angustatus as Native Aquatic Plants to Cadmium (카드뮴에 의한 수생식물 창포의 생리적·구조적 장해)

  • Lee, Sung-Chun;Kim, Wan-Soon
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.371-377
    • /
    • 2012
  • This study was conducted to investigate the physiological and structural damages to cadmium (Cd) in Acorus calamus var. angustatus as a native aquatic species in Korea. In addition to the physiological responses such as plant growth, photosynthesis, and root activity, the structural damages in leaf and root tissues were observed through light and scanning electronic microscopy. The five-leaf plants were treated with different Cd concentrations 0, 10, 25, and 50 ${\mu}M$ for 15 days. The plant damages to Cd were significant at 10-25 ${\mu}M$ Cd physiologically and at 25-50 ${\mu}M$ Cd structurally. The physiological damages in the shoot part (photosynthesis) started at 10 ${\mu}M$ Cd whereas those in root part (root activity) were serious above 25 ${\mu}M$ Cd. On the other hand, the structural damages began at 25 ${\mu}M$ Cd in the leaf and root tissues similarly, but the plant tissue destruction was more serious in the roots than in leaves. Based on the plant physiological and structural damages, 10 ${\mu}M$ was assumed to be the limited concentration for sustainable growth and landscaping ability in Acorus calamus var. angustatus to Cd.

Structure and Distribution of Vegetation and Their Implications for the Conservation in the Gonggeomji Wetland Protection Area, South Korea (공검지 습지보호지역의 식생 구조와 분포 및 보전을 위한 제안)

  • Lee, Cheolho;Kim, Hwirae;Park, So Hyun;Chu, Yeounsu.;Yoon, Jungdo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.267-276
    • /
    • 2019
  • The Gonggeomji Reservoir is a historical irrigation facility built in the 8th century and designated as a wetland protected area by Ministry of Environment, Korea. In order to collect the baseline data necessary for developing a sustainable conservation strategy, we investigated the classification of actual vegetation, the vegetation distribution and the floristic structure of the vegetation in the Gonggeomji Wetland Protection Area. In the whole protection area, a total of 26 plant communities were classified including the wetland, riparian, grassland, forest, farmland, and orchard vegetation. According to the results of detrended correspondence analysis, the structure of wetland vegetation was mainly affected by water depth and human disturbance. In reservoir wetlands, floating vegetation such as Utricularia vulgaris var. japonica, Trapa japonica, and emergent vegetation such as Nelumbo nucifera, Typha spp. completely covered the water surface. Since 2014, the reservoir wetland has been terrestrialized with the expansion of emergent and hygrophytic plants. For the sustainable conservation and restoration of wetland protected areas, it is necessary to naturalize the topography and wetland vegetation, recovery the hydrologic system, and restore ecosystem connectivity from wetlands to forests.

The Relationship between the Dragonfly Diversity and the Environmental Factors in the Juam Wetland (주남습지에 서식하는 잠자리와 주변환경과의 관계)

  • Kim, Ji-Suk;Lee, Soo-Dong;Kim, Dong-Pil
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.66-76
    • /
    • 2018
  • This study surveyed the species and population of dragonflies in 20 study sites in the Junam wetland in May and July 2015 to investigate the relationship between the dragonflies and the inhabited environment. We measured the environmental factors such as the area of emergent plants, the area of floating and floating-leaved plants, the area of water surface, the area of water plants, and the nearby land-use type and analyzed the relationship to the dragonfly species, population, and diversity index. We found 757 dragonflies belonging to 21 species of 6 families. The area of floating and floating-leaved plants and the area of water surface affected the species diversity. The area of floating and floating-leaved plants and the area of surface water, in particular, showed the positive correlation with the species richness and the dominance value, respectively. The area of water surface showed the negative correlations with Shannon's diversity index and evenness. Among the type of surrounding land-uses, the dry fields and orchards showed significantly lower average species richness than wetlands. Among the species, Cercion calamorum and Crocothemis servilia were positively correlated with floating and floating-leaved plants. Cercion v-nigrum and Epophthalmia elegans were positively correlated with the area of water surface, and Ischnura asiatica and Ceriagrion nipponicum were negatively correlated. The recent uncontrolled proliferation of lotus colony in the Junam wetland is likely to affect greatly the species composition of dragonflies which have a close relationship with plant species.

Carbon Storage and Sequestration in Constructed Wetlands: A Systematic Review (국내 및 국외 적용된 인공습지 내 Bibliometric Analysis을 이용한 탄소저장 및 탄소격리 능력 분석)

  • M. E. L. Robles;N. J. D. G. Reyes;H. S. Choi ;M. S. Jeon; L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.132-144
    • /
    • 2023
  • The use of constructed wetlands (CWs) to sequester carbon has been a topic of interest in recent studies. However, CWs have been found to be both carbon sinks and carbon sources, thus leaving uncertainties about their role in carbon neutrality initiatives. To address the uncertainties, a bibliometric and comprehensive review on carbon sequestration in CWs was conducted. Upon forming various scripts using CorText Manager, it was found that a majority of the studies focused on the effectiveness of CWs to remove nutrients, particularly nitrogen. The results of the comprehensive review revealed that high carbon concentrations and carbon sequestration rates in CW soils are dependent on the vegetation types used, the ages of the CWs, and the organic content of inflow water entering the CWs. The Typha genus was the most dominant plant genus used in the CWs from the reviewed studies and was associated with the highest carbon sequestration rates documented in this review study. Furthermore, the relatively high ability of tree species, in comparison to emergent plants, to sequester carbon was observed. Therefore, incorporating tree species into CW designs and adding them to emergent plants is seen as a potential breakthrough approach to improve the ability of CWs to sequester carbon and ultimately contribute to mitigating climate change.

Germination Experiments using Natural Wetland Soil for Introducing Non-emergent Plants into a Constructed Wetland (비정수식물의 인공습지도입을 위한 자연습지토양 발아실험)

  • Yi, Yong-Min;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Wetland plants are an important component for wetland design and construction because they determine functions of wetlands through interactions with the abiotic environment such as wetland soil and hydrology as well as with other wetland organisms. In this study, germination experiments with soils from a natural wetland that contain seeds of wetland plants were conducted in wetland mesocosms to investigate the applicability of natural wetland soils for introducing and establishing wetland plants into constructed wetlands. Seven species were germinated in the experiment, with two new species that were not found in the field survey of wetland plants in the West Nakdong River area, Korea. The number of plant individuals germinated in submerged conditions (15 individuals) was much greater than that in waterlogged conditions (2 individuals). In experiments in which soils from a natural wetland and a wetland construction site were mixed at different ratios, the largest number of plant individuals was observed in the condition with 100% natural wetland soil. The highest growth was observed at 50% natural wetland soil for Hydrilla verticillata and 100% for Ceratophyllum demersum. These results suggest that 1:1 mixture of soils from natural wetland wetlands and wetland construction sites would provide an appropriate condition for secure establishment of submerged plants in constructed wetlands.

  • PDF

The Riparian Vegetation Disturbed by Two Invasive Alien Plants, Sicyos angulatus and Paspalum distichum var. indutum in South Korea (침입외래식물인 가시박과 털물참새피에 의하여 교란된 하안식생)

  • Lee, Chang Woo;Kim, Deokki;Cho, Hyunsuk;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.255-263
    • /
    • 2015
  • Biological invasion of alien plants is considered to be one of the most serious threats to biodiversity in riparian zones. The effects of two invasive alien plants, Sicyos angulatus and Paspalum distichum var. indutum, on the flora and community structure of the riparian vegetation were investigated at 22 sites at streams in Korea. Sicyos angulatus has invaded the central Korean Peninsula. This alien plant has caused problems to stream managers because of its aggressive vining growth. It had suppressed native vegetation such as trees, shrubs and tall grasses on bank slope and higher floodplains. Paspalum distichum var. indutum has become more widespread in the southern part of Korea. This invasive plant has shallow rhizomes and creeping, extensively branched stolons. It forms a dense mat over lotic or slowly-flowing water and threatens submerged and short emergent hydrophytes. In order to control the introduction and expansion of alien plants, limitation of artificial disturbances and appropriate alien plant management are needed in riparian areas.