• Title/Summary/Keyword: Embryonic tissues

Search Result 125, Processing Time 0.025 seconds

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF

Expression of HBP2 in Human Spermatogonial Stem Cell-like Cells from Nonobstructive Azoospermia Patients and Its Role in G1/S Transition & Downregulation in Colon Cancer

  • Yoo, Jung-Ki;Lee, Dong-Ryul;Lim, Jung-Jin;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.211-215
    • /
    • 2008
  • The HMG box containing protein (HBP) has a high mobility group domain and involved in the regulation of proliferation and differentiation of tissues. We screened HBP2 in glioblastoma using Suppression Subtractive Hybridization (SSH) and isolated human spermatogonial stem cell-like cells (hSSC-like cells) derived from patients of nonobstructive azoospermia (NOA). Expression of HBP2 was analyzed by RT-PCR in undifferentiated stem cells (human Embryonic Stem Cells, hSSC-like cells 2P) and spontaneous differentiated stem cells (hSSC-like cells 4P). It was overexpressed in hESC and hSSC-like cells 2P but not in hSSC-like cells 4P. Also, the expression level of HBP2 was downregulated in colon tumor tissues compared to normal tissues. Specifically in synchronized WI-38 cells, HBP2 was highly upregulated until the G1 phase of the cell cycle and gradually decreased during the S phase. Our results suggest that HBP2 was downregulated during the spontaneous differentiation of hSSC-like cells. HBP2 was differently expressed in colon tissues and was related to G1-progression in WI-38 cells. It may playa role in the maintenance of an undifferentiated hSSC-like cell state and transits from G1 to S in WI-38 cells. This research was important that it identified a biomarker for an undifferentiated state of hSSC-like cells and characterized its involvement to arrest during cell cycle in colon cancer.

Analyses of Transcription Factor CP2 Expression during Development and Differentiation

  • Chae, Ji-Hyung;Oh, Eun-Jung;Kim, Chul-Geun
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 1997
  • Transcription factor CP2 was identified initially to bind the promoter region of the murine a-globin gene and its activity was shown to increase 2 to 3 fold during the induced differentiation of murine erythroleukemia (MEL) cells. To get further insight into the role of CP2 during development and differentiation, steady-state levels of CP2 message were monitored by using reverse transcriptase (RT)-PCR and in situ hybridization assays in the cultured MEL cells and differentiating embryonic stem (ES) cells in vitro, and in fetal and adult mouse tissues. The amount of CP2 messages increased 3 to 5 fold during induced differentiation of MEL cells, suggesting that the increment of CP2 activity during induced differentiation of MEL cells is originated from the increase of transcription initiation. On the other hand, CP2 expression is not restricted to the erythroid lineage cells; CP2 expressed ubiquitously from the undifferentiated ES cells to adult tissue cells. CP2 transcript was observed even in the undifferentiated ES cells and the level of expression increased from day 8 of the differentiating embryoid bodies. RT-PCR assay in the total RNAs prepared from several tissues of the adult mouse also showed ubiquitous expression profile, although the levels of expression were variable among tissues. When non-radioactive in situ hybridization assay was performed to the paraffin-sectioned whole body mouse embryos at days 11.5, 13.5, and 16.5 after fertilization, variable amounts of positive signals were also detected in different tissues.

  • PDF

Nitric Oxide and Embryo Development

  • Lim, Jeong M.
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.5-6
    • /
    • 2000
  • Nitric oxide (NO) is a simple combined molecule of oxygen and nitrogen, and has a wide variety of action on the physiological and pathophysiological function of the body. It is a key transducer of the vasodilator message from the endothelium to vascular cells. However, its different roles have been elucidated by numerous researches, which was undertaken in the 80's and 90's. Three types of NO synthase were involved in synthesizing NO and they are identified in different tissues and cells including macrophage, endothelial cells and even tumor cells. In the late 90's, we undertook a number of researches for elucidating the effect of NO on embryo development, since developmentally arrested bovine embryos contained large amount of NO metabolites in their cytoplasm. Subsequently, we found that the addition of a spontaneous NO donor to culture medium markedly inhibited embryo development and that its inhibitory role was independent of embryonic genome activation. Research was focused to find a way to prevent the inhibitory action of NO on embryo development and demonstrated that the addition of hemoglobin, a NO scavenger, to embryo culture medium greatly stimulated in vitro-development of bovine and mouse embryos. Based on these research outcomes, we developed a NO action-free culture system for embryos and other tissues. The efficacy of such system has subsequently been confirmed by achieving the high rates of preimplantation development and blastocyst formation in the NO action-free culture of mouse and bovine embryo. In this article, we briefly introduced the nature of NO and our research outcomes on the role of NO in embryo development.

  • PDF

MS2 Labeling of Endogenous Beta-Actin mRNA Does Not Result in Stabilization of Degradation Intermediates

  • Kim, Songhee H.;Vieira, Melissa;Kim, Hye-Jin;Kesawat, Mahipal Singh;Park, Hye Yoon
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.356-362
    • /
    • 2019
  • The binding of MS2 bacteriophage coat protein (MCP) to MS2 binding site (MBS) RNA stem-loop sequences has been widely used to label mRNA for live-cell imaging at single-molecule resolution. However, concerns have been raised recently from studies with budding yeast showing aberrant mRNA metabolism following the MS2-GFP labeling. To investigate the degradation pattern of MS2-GFP-labeled mRNA in mammalian cells and tissues, we used Northern blot analysis of ${\beta}$-actin mRNA extracted from the Actb-MBS knock-in and $MBS{\times}MCP$ hybrid mouse models. In the immortalized mouse embryonic cell lines and various organ tissues derived from the mouse models, we found no noticeable accumulation of decay products of ${\beta}$-actin mRNA compared with the wild-type mice. Our results suggest that accumulation of MBS RNA decay fragments does not always happen depending on the mRNA species and the model organisms used.

Expression and Characterization of Bovine DNA Methyltransferase I

  • Chang, Yoo-Min;Yang, Byoung-Chul;Hwang, Seong-Soo;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • In this study, bovine Dnmt1 cDNA was sequenced and detected Dnmt1 mRNA level in bovine tissues by northern blot, methylation pattern of genome by southern blot, specific localization of Dnmt1 in mouse and bovine preimplantation embryos by immunocytostaining and Dnmt1 protein level in ovary and testis by western blot. Bovine Dnmt1 cDNA sequence showed more homology with that of human than mouse and rat. The RNA level of Dnmt1 was 10 times higher expression in placenta than other tissues. This indicates that placenta was hypermethylated compared to others organs. The genomic DNA could not be cut by a specific restriction enzyme (HpaII) in placenta, lung and liver of bovine. It suggests that Dnmt1 in some somatic cells was already methylated. Dnmt1, which has the antibody epitope 1316~1616, was distributed in nucleus and cytoplasm including the stage of pronuclear stage and maturation of oocyte and gradually weaken to blastocyst stage compare to negative. In addition, Dnmt1 was strongly expressed in tetraploid embryo and cloned 8-cell than IVF 8-cell. An aberrant pattern of DNA methylation in cloned embryo may be abnormal development of fetus, embryonic lethality and placenta dysfunction. The somatic specific band (190kDa) was appeared in ovary and testis, but oocyte specific band (175kDa) was not. Further investigations are necessary to understand the complex links between the methyltransferases and the transcriptional activity of genes in the cloned bovine tissues.

DPPA2 Protein Expression is Associated with Gastric Cancer Metastasis

  • Shabestarian, Hoda;Ghodsi, Mohammad;Mallak, Afsaneh Javdani;Jafarian, Amir Hossein;Montazer, Mehdi;Forghanifard, Mohammad Mahdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8461-8465
    • /
    • 2016
  • Gastric cancer (GC) as the fourth most common cause of malignancies shows high rate of morbidity appropriating the second leading cause of cancer-related death worldwide. Developmental pluripotency associated-2 (DPPA2), cancer-testis antigen (CT100), is commonly expressed only in the human germ line and pluripotent embryonic cells but it is also present in a significant subset of malignant tumors. To investigate whether or not DPPA2 expression is recalled in GC, our aim in this study was to elucidate DPPA2 protein expression in gastric cancer. Fifty five GC tumor and their related margin normal tissues were recruited to evaluate DPPA2 protein expression and its probable associations with different clinicopathological features of the patients. DPPA2 was overexpressed in GC cases compared with normal tissues (P < .005). While DPPA2 expression was detected in all GC samples, its high expression was found in 23 of 55 tumor tissues (41.8%). Interestingly, 50 of 55 normal samples (90.9%) were negative for DPPA2 protein expression and remained 5 samples showed very low expression of DPPA2. DPPA2 protein expression in GC was significantly correlated with lymph node metastasis (p = 0.012). The clinical relevance of DPPA2 in GC illustrated that high level expression of this protein was associated with lymph node metastasis supporting this hypothesis that alteration in DPPA2 was associated with aggressiveness of gastric cancer and may be an early event in progression of the disease. DPPA2 may be introduced as a new marker for invasive and metastatic GCs.

Developmental Patterns of mST3GaIV mRNA Expression in the Mouse: In Situ Hybridization using DIG-labeled RNA Probes

  • Ji, Min-Young;Lee, Young-Choon;Do, Su-Il;Nam, Sang-Yun;Jung, Kyu-Yong;Kim, Hyoung-Min;Park, Jong-Kun;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.525-530
    • /
    • 2000
  • mST3GaIV synthesizes ganglioside GM3, the precursor for simple and complex a- and b- series gangliosides, and the expression and regulation of mST3GaIV (CMP-NeuAc: lactosylceramide $\alpha$2,3-sialyltransferase) activity is central to the production of almost all gangliosides, a class of glycosphingolipids implicated in variety of cellular processes such as transmembrane signaling, synaptic transmission, specialized membrane domain formation and cell-cell interactions. To understand the developmental expression of mST3GaIV in mice, we investigated the spatial and temporal expression of mST3GaIV mRNA during the mouse embryogenesis [embryonic (E) days; 19, E11, E13, E15] by in situ hybridization with digoxigenin-labeled RNA probes. All tissues from 19 and E11 were positive for mST3GaIV mRNA. On E13, mST3GaIV mRNA was expressed in various neural and non-neural tissues. In contrast to these, on E15, the telencephalon and liver produced a strong expression of mST3GaIV which was a quite similar to that of E13. In this stage, mST3GaIV mRNA was also expressed in some non-neural tissues. These data indicate that mST3GaIV is differently expressed at developmental stages of embryo, and this may be importantly related with regulation of organogenesis in mice.

  • PDF

Developmental Patterns of Gal$\beta$1,3(4)GlcNAc $\alpha$2,3-Sialyltransferase (ST3Gal III) Expression in the Mouse: In Situ Hybridization Using DIG-labeled RNA Probes

  • Ji, Min-Young;Lee, Young-Choon;Kim, Kyoung-Sook;Cho, Jin-Won;Jung, Kyu-Yong;Kim, Cheorl-Ho;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 1999
  • Sialic acids are key determinants for biological processes, such as cell-cell interaction and differentiation. Sialyltransferases contribute to the diversity in carbohydrate structure through their attachment of sialic acid in various terminal positions on glycolipid and glycoprotein (N-linked and O-linked) carbohydrate groups. Gal$\beta$ 1,3(4)GlcNAc $\alpha$2,3-sialyltransferase (ST3Gal III) is involved in the biosynthesis of $sLe^{X}$ and sLe^{a}$ known as selection ligands and tumor-associated carbohydrate structures. The appearance and differential distribution of ST3Gal III mRNA during mice embryogenesis [embryonic (E) days; E9, E11, E13, E15] were investigated by in situ hybridization with digoxigenin-labeled RNA probes coupled with alkaline phosphatase detection. On E9, all tissues were positive for ST3Gal III mRNA expression whereas ST3Gal III mRNA on E11 was not detected throughout all tissues. On E13, ST3GAl III mRNA was expressed in different manner in various tissues. In this stage, ST3Gal III mRNA was positive only in the liver, pancreas and bladder. On E15, specific signal for ST3GAl III was detected in the liver, lung and forebrain. These results indicate that ST3Gal III is differently expressed at developmental stages of mice embryo, and this may be importantly related with regulation of organogenesis in mice.

  • PDF

Expression of CD30 in Testis and Epididymis of Adult Mice

  • Choo, Young-Kug;Nam, Sang-Yun
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.197-203
    • /
    • 2004
  • CD30 is a member of tumor necrosis factor receptor (TNFR) superfamily and has pleiotropic functions including cell activation, proliferation, differentiation, and death, depending on cell types and stage of differentiation. Although CD30 expression has been described mainly in hematopoietic tissues, several types of nonhematopoietic tumors including embryonic carcinoma and germ-cell tumors express CD30. We examined CD30 distribution in the testis and epididymis from wild type and CD30-deficient mice. In the testis, spermatogonia, spermatocytes and Sertoli cells expressed CD30, but not in spermatids. Spermatogonia and spermatocytes near the basement membrane strongly reacted to anti-CD30. In the epididymis, CD30 expression was exclusively observed in luminal epithelia and some interstitial cells. Taken together, these results show a spatio-temporal regulation of CD30 expression in mouse testis and epididymis and suggest a possible role of CD30 in spermatogonia and spermatocytes.