• 제목/요약/키워드: Embryonic germ cells

검색결과 87건 처리시간 0.036초

배아주간세포수립을 위한 Alkaline Phosphatase(AP)의 상이한 발현 양식의 추적 (Follow Up Expression Patterns of Alkaline Phosphatase(AP) as a Marker for Establishing Mouse Embryonic Stem (ES) Cells)

  • 김진회;차수경;노민경;송상진;구덕본;이훈택;정길생
    • 한국가축번식학회지
    • /
    • 제19권1호
    • /
    • pp.55-63
    • /
    • 1995
  • The putative totipotency germ cells has a relative abundance of alkaline phosphatases. Thus, histological staining of AP activity offers a new route to isolate totipotent cells and also provides insights into culture systems of these cells. Furthermore, the AP staining technique is simple and fast, requires only the napthol AS/MS substrate in combination with trapping diazonium salts such as fast red or fast blue. However, our unexpected finding was that AP staining of mouse ES cells were detected in the undifferentiaed epiblast-derived cells as well as several types of differentiating cells. This findings are different from results of Talbot et al. (1993) reported usefulness of the AP staining and implies that histological staining of AP may not by useful to determine undifferentiaed state or totipotency of ES cells. Thus, we have investigated the patterns of AP expression by RT-PCR in order to identify a marker of undifferentiated ES/primordial germ (PG) cells. In RT-PCR analysis, embryonic (E)-AP was detected only in undifferentiated ES cells, but intestinal(I)-AP was not detected in all of the examined ES and PG cells. In addition, nonspecific (NS)-AP wasdetected in undifferentiated PG cell from day 7, 5 to 13 of gestation. Histological activity of AP in ES cells was completely suppressed by addition of L-phenylalanine (Phe), L-homoarginine (Har), and L-phenylalanylglycylglycine (PheGlyGly) as an inhibitor, but RT-PCR showed the same results as in the absence of an inhibitors. Our findings suggested that expression of E-AP and NS-AP may use as a marker to determine the undifferentiated status in ES and PG cells.

  • PDF

Migration Activity of Chicken Gonadal Primordial Germ Cells (gPGCs) and Post-transfer Localization of LacZ-transfected gPGCs in the Embryonic Gonads

  • Jeong, D.K.;Han, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권9호
    • /
    • pp.1227-1231
    • /
    • 2002
  • A powerful tool for chicken transgenesis could be established by employing a germline chimera production through primordial germ cell transplantation. This study was conducted to examine whether foreign gene-transfected gonadal primordial germ cells (gPGCs) have a migration activity into the gonad after transfer to recipient embryos. In Experiment 1, gPGCs of Korean Ogol Chicken were retrieved from 5.5-day-old embryos and subsequently transferred to the dorsal aorta of 2.5-day-old White Leghorn embryos after being labeled with PKH26 fluorescent dye. To confirm migration activity after transplantation, recipient embryos were sacrificed and examined on 3 days after transfer. Sex determination was concomitantly undertaken to examine whether sex of recipient embryos could affect the migration activity of gPGCs. All of embryonic gonads examined showed positive signals with PKH26 fluorescence and W-chromosome specific band by polymerase chain reaction (PCR) was detected in male embryos when gPGCs with ZW chromosome were transferred to recipient embryos. In Experiment 2, retrieved gPGCs were transfected with LacZ gene-containing cytomegalovirus promoter ($pCMV{\beta}$) by electroporation and subsequently transferred to recipient embryos. LacZ gene expression was identified in the gonads of 6 or 10-day-old recipient embryos and hatched-chicks. A total of 20 embryos and 12 hatched-chicks were examined and 11 of them (10 embryos and one hatched chicken; 11/32=34.4%) expressed $\beta$-galactosidase, a marker substance of LacZ gene. The results of this study demonstrated that foreign gene-transfected gPGCs can migrate and settle down into the gonad after being transferred into the blood vessel of the recipient embryos. This established technique will contribute to developing a peer biotechnology for transgenic chicken.

신생 생쥐 고환에서 기인한 다분화능 생식줄기세포주의 확립 및 특성 분석 (Establishment and Characterization of Multipotent Germ Line Stem Cells (MGSCs) from Neonatal Mouse Testis)

  • 한상철;송행석;전진현
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제35권1호
    • /
    • pp.39-48
    • /
    • 2008
  • 목 적: 본 연구에서는 신생 생쥐 고환으로부터 다분화능 생식줄기세포주 (MGSCs)를 확립하고, 배아체 형성을 통한 삼배엽성 세포로의 분화 가능성을 확인하고자 하였다. 연구방법: 고환에서 유래한 MGSCs를 확립하기 위하여 생후 $2{\sim}3$일된 생쥐 고환 조직으로부터 세포들을 분리하여 1% FBS를 첨가한 생쥐 배아줄기세포주 배양조건에서 배양하였다. MGSCs 콜로니가 형성된 후에는 배양액의 FBS의 농도를 15%로 높였다. 이러한 과정으로 확립된 MGSCs의 미분화 및 분화 특성을 배아줄기세포주와 비교, 분석하였다. 결 과: 신생 생쥐 고환 조직에서 수획한 세포들로 실시한 9번의 배양실험에서 2개의 MGSCs 세포주를 확립하였다. MGSCs 세포주와 생쥐 배아줄기세포 모두에서 미분화 표지인자인 Thy-1, Oct-4, Nanog, Sox2의 발현과 alkaline phosphatase 활성을 관찰할 수 있었으며, MGSCs의 미세구조 또한 생쥐 배아줄기세포와 유사하였다. MGSCs에서 형성된 배아체에서 삼배엽성 표지유전자의 발현을 확인하였다. 결 론: 본 연구의 결과는 배아줄기세포의 윤리적인 문제점을 극복할 수 있는 고환 유래의 다분화능 MGSCs가 생물공학과 재생의학에서 효율적으로 이용될 수 있는 가능성을 보여준 것으로 생각된다.

Examination Of The Migratory Ability Of Primordial Germ Cells From Embryonic Gonads At Different Developmental Stages In Quail

  • Kim, Duk-Kyung;Park, Tae ub;Lee, Yong-Mok;Kim, Mi-Ah;Kim, Gwi-Sook;Kim, Ki-Dong;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2000년도 제17차 정기총회 및 학술발표
    • /
    • pp.75-77
    • /
    • 2000
  • Retaining migratory activity is a prerequisite for the manipulation and use of PGCs. This study was conducted to examine whether migratory activity is retained in the primordial germ cells(PGCs) from gonads at the later embryonic developmental stage. In the present study, gonads were dissected from 5-, 6- and 10-day-old quail embryos and treated with trypsin-EDTA for the degradation of gonadal tissue. Gonadal PGCs (gPGCs) were purified by Ficoll density gradient centrifugation and labeled with PKH26 fluorescent dye. The PKH26-labeled gPGCs were microinjected into the blood vessels of recipient quail embryo. After further incubation of 3 days, the manipulated recipients were embedded in paraffin and sectioned. The gPGCs were detected by their fluorescence under the fluorescent microscopy and the confocal laser microscopy. As a result, 10-day-old quail gPGCs as well as 5-and 6-day-old gPGCs, could migrate to recipient embryonic gonads and settle down. These results suggest that the 10-day-old gPGCs have the properties of circulating PGCs at early stage. Therefore the PGCs from 10-day old embryonic gonads can be used for the tools of genetic manipulation.

  • PDF

줄기세포와 생식세포에서 리프로그래밍 인자에 대한 최근 연구 동향과 전망 (Current Progress and Prospects of Reprogramming Factors - Stem Cells vs Germ Cells -)

  • 서유미;이경아
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권2호
    • /
    • pp.43-50
    • /
    • 2010
  • 최근에 체세포 리프로그래밍 기법을 사용하여 체세포에 몇 가지 전사인자(리프로그래밍 인자)를 넣어줌으로써 유도만능줄기세포(induced pluripotent stem cell, iPS)를 만드는데 성공하였다. 유도만능줄기세포는 배아줄기세포와 유사하게 자가재생 할 수 있는 능력이 있으며, 신체의 모든 타입의 세포로 분화할 수 있는 특징을 가지고 있다. 배아줄기세포와는 달리 면역거부반응이 없다는 점과 윤리적인 문제로부터 자유롭다는 장점이 있어 2006년 Yamanaka 팀이 유도만능줄기세포에 관해 처음 보고한 이후로 이 분야 연구의 급속한 발전이 이루어지고 있다. 하지만 안전성의 문제점 때문에 세포치료제로 사용되기 위해서는 리프로그래밍 인자의 도입 방법 및 새로운 리프로그래밍 인자의 발굴 등 몇 가지 해결해야 할 점들이 남아 있다. 본 종설에서는 유도만능줄기세포를 만드는데 사용된 몇 가지 리프로그래밍 인자에 대해 보고된 연구 내용을 리프로그래밍 인자가 존재하는 세포인 배아줄기세포 및 난자와 배아에서 정리하고자 하며, 리프로그래밍 인자의 연구에 관한 방향에 대해 논의하고자 한다.

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • 대한의생명과학회지
    • /
    • 제19권1호
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

인간 배아 줄기세포의 OPS와 Grid를 이용한 유리화 동결법의 효율성 비교 (Modification of Efficient Vitrification Method by Using Open Pulled Straw (OPS) and EM Grid as Vehicles in Human Embryonic Stem Cell)

  • 박규형;최성준;김희선;오선경;문신용;차광렬;정형민
    • 한국수정란이식학회지
    • /
    • 제18권3호
    • /
    • pp.179-186
    • /
    • 2003
  • Human embryonic stem (hES) cell lines have been derived from human blastocysts and are expected to have far-reaching applications in regenerative medicine. The objective of this study is to improve freezing method with less cryo-injuries and best survival rates in hES cells by comparing various vitrification conditions. For the vitrifications, ES cells are exposed to the 4 different cryoprotectants, ethylene glycol (EG), 1,2-propanediol (PROH), EG with dime-thylsulfoxide (DMSO) and EG with PROH. We compared to types of vehicles, such as open pulled straw (OPS) or electron microscopic cooper grids (EM grids). Thawed hES cells were dipped into sequentially holding media with 0.2 M sucrose for 1 min, 0.1 M sucrose for 5 min and holding media for 5 min twice and plated onto a fresh feeder layer. Survival rates of vitrified hES cells were assessed by counting of undifferentiated colonies. It shows high survival rates of hES cells frozen with EG and DMSO (60.8%), or EG and PROH(65.8%) on EM grids better than those of OPS, compared to those frozen with EG alone (2.4%) or PROH alone (0%) alone. The hES cells vitrified with EM grid showed relatively constant colony forming efficiency and survival rates, compared to those of unverified hES cells. The vitrified hES cells retained the normal morphology, alkaline phosphates activity, and the expression of SSEA-3 and 4. Through RT-PCR analysis showed Oct-4 gene expression was down-regulated and embryonic germ layer markers were up-regulated in the vitrified hES cells during spontaneous differentiation. These results show that vitrification method by using EM grid supplemented with EG and PROH in hES cells may be most efficient at present to minimize cyto-toxicity and cellular damage derived by ice crystal formation and furthermore may be employed for clinical application.

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.

PGC-Enriched miRNAs Control Germ Cell Development

  • Bhin, Jinhyuk;Jeong, Hoe-Su;Kim, Jong Soo;Shin, Jeong Oh;Hong, Ki Sung;Jung, Han-Sung;Kim, Changhoon;Hwang, Daehee;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.895-903
    • /
    • 2015
  • Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.