• Title/Summary/Keyword: Embryonic cell

Search Result 990, Processing Time 0.028 seconds

A Simple Embryonic Stem Cell-Based in vitro Differentiation System That Recapitulates Early Erythropoietic Events in the Mouse Embryo (생쥐 배아에서의 초기 적혈구 분화를 재현 할 수 있는 배아주 세포에 기초한 간단한 시험관내 분화체계)

  • 김철근
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.239-247
    • /
    • 1996
  • An embryonic stem (ES) cell-based in vitro model system was examined to determine whether a simple differentiation of embryoid bodies (EB) in the suspension medium is useful to dissect early erythropoiesis. Characteristics of the differentiating EBs were monitored for their differentiation potential to generate hematopoietic cell types by general morphology, benzidine staining and two-step colony assays, and expressivity of several erythroid marker genes by the RT-PCR analysis for total cellular RNA prepared from the differentiating EBs. Every ematopoietic lineage cells were generated from the differentiating EBs with reproducible frequencies, similar to the other sophisticated differentiation protocols. Furthermore, the globin gene switching in differentiating ES cells paralleled the sequence of events found in the mouse embryo, and such that their expression was activated by at least 12 hrs later than those of erythroid-specific transcription factors, GATA-1 and Tal-1 The erythropoietic differentiation program initiated reproducibly and efficiently in this simple differentiation system in a suspension culture, such that this system may be useful for dissection of the molecular events of early erythropoiesis.

  • PDF

Early Mouse Embryonic Development In Vitro by Co-culture with Bovine and Porcine Oviductal Epithelial Cells (소와 돼지의 난관 상피세포와의 공배양이 마우스 초기배의 체외발달에 미치는 영향)

  • Lee, S.;Hur, E. J.;Seok, H. B.
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.201-210
    • /
    • 1996
  • This experiment was carried out to evaluate the effect of early mouse embryonic development in vitro by co-culture with bovine and porcine oviductal epithelial cells (BOEC and POEC). The 2-cell embryos were collected from the oviducts of the superovulated and mated cultured in D-PBS /15% FCS at 48 hours after hCG injection. The in vitro developmental rate of blastocyst formation in the embryos were examined under the fllowing treatments; 1) TCM 199 added 15% HCS, 2) Ham's F-10 added 15% HCS, 3) MediCult IVF medium, 4) TCM 199 added 15% HCS + BOEC, 5) TCM 199 added 15% HCS + POEC, 6) Ham's F40 added 15% HCS + BOEC, 7) Ham's F-10 added 15% HCS + POEC,8) MediCult IVF medium + BOEC, 9) MediCult IVF medium + POEC. For a comparative study of in vitro development for 96 hours after hCG injection, were cultured with oviductal epithelial cell and media only. The obtained results were 2-cell embryos developed to the blastocyst stage in TCM 199, Ham's F-10 and MediCult IVF medium at the rates of 84.4,83.2 and 81.6%. respectively. The higher developmental rates(91~97%) of blastocyst formation was appeared when the embryos were co-cultured with a monolayer of bovine or porcine oviductal epithelial cells in TCM 199 or Ham's F-10 and MediCult IVF media. No significant difference in developmental rates was shown between bovine and porcine oviductal epithelial cells but significant difference in co-culture system in comparison between media only system and co-cultures. In conclusions, oviductal epithelial cells, BOEC and POEC, when co-culture with mouse early embryos improved the rates of development, blastocyst and hatching. Therefore, it is suggested that co-culture system using oviductal epithelial cells improve early embryonic developtnent in mouse.

  • PDF

Effect of Inhibitor of Glycogen Synthase Kinase 3 on Self-Renewal of Human Embryonic Stem Cells

  • Lee Eunyoung;Rho Jeung-yon;Yu Kwon;Paik Sang-Gi;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2005
  • Human embryonic stem cells (hESCs) derived from the inner cell mass of blastocysts have the ability to renew themselves and to differentiate into cell types of all lineage. The present study was carried out to investigate whether the Wnt signaling pathway is related to maintaining self-renewal of hESCs. Glycogen Synthase Kinase 3 (GSK-3) inhibitor, BIO ((2'Z,3'E)-6-Bromoindirubin-3'-oxime) was treated to Miz-hES1 line for activation of Wnt signaling pathway. BIO-nontreated hESCs (control) and BID-treated hESCs were cultured for 5 days in the modified feeder-free system. During the culture of hESCs, differences were observed in the colony morphology between 2 groups. Controls were spread outwards whereas BIO-nontreated hESCs were clumped in the center and the differentiated cells were spreading outwards in the edges. The results of stem cell specific marker staining indicated that control were differentiated in large part whereas BIO-treated hESCs maintain self-renewal in the center of the colony. The results of lineage marker staining suggested that outer cells of the hESC colony were differentiated to the neuronal progenitor cells in both control and BIO-treated hESC. These results indicate that Wnt signaling is related to self-renewal in hESCs. In addition, control group showed higher composition of apoptotic cells $(23.76\%)$ than the BID-treated group $(5.59\%)$. These results indicate that BIO is effective on antapoptosis of hESCs.

Renal Precursor Cell Transplantation Using Biodegradable Polymer Scaffolds

  • KIM , SANG-SOO;PARK, HEUNG-JAE;HAN, JOUNG-HO;PARK, MIN-SUN;PARK, MOON-HYANG;SONG, KANG-WON;JOO, KWAN-JOONG;CHOI, CHA-YONG;KIM, BYUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.105-111
    • /
    • 2005
  • End-stage renal disease is a fatal and devastating disease that is caused by progressive and irreversible loss of functioning nephrons in the kidney. Dialysis and renal transplantation are the common treatments at present, but these treatments have severe limitations. The present study investigated the possibility of reconstructing renal tissues by transplantation of renal precursor cells to replace the current treatments for end-stage renal disease. Embryonic renal precursor cells, freshly isolated from metanephroi of rat fetus at day 15 post-gestation, were seeded on biodegradable polymer scaffolds and transplanted into peritoneal cavities of athymic mice for three weeks. Histologic sections stained with hematoxylin & eosin and periodic acid-Schiff revealed the formation of primitive glomeruli, tubules, and blood vessels, suggesting the potential of embryonic renal precursor cells to reconstitute renal tissues. Immunohistochemical staining for proliferating cell nuclear antigen, a marker of proliferating cells, showed intensive nuclear expression in the regenerated renal structures, suggesting renal tissue reconstitution by transplanted embryonic renal precursor cells. This study demonstrates the reconstitution of renal tissue in vivo by transplanting renal precursor cells with biodegradable polymer scaffolds, which could be utilized as a new method for partial or full restoration of renal structure and function in the treatment of end-stage renal disease.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

Optimal Derivation Timing for Establishment of Porcine Embryonic Stem Cells (돼지 배아줄기세포 확립을 위한 최적의 유도시기)

  • Kim, Eun-Hye;Cheong, Seung-A;Yoon, Junchul David;Jeon, Yubyeol;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A lot of works have been dedicated to clarify the reasons why the establishment of embryonic stem cells (ESCs) from pig is more difficult than that from mouse and human. Several concomitant factors such as culture condition including feeder layer, sensitivity of cell to cell contact, definitive markers of pluripotency for evaluation of the validity and optimal timing of derivation have been suggested as the disturbing factors in the establishment of porcine ESCs Traditionally, attempts to derive stem cells from porcine embryos have depend on protocols established for mouse ESCs using inner cell mass (ICM) for the isolation and culture. And more recently, protocols used for primate ESCs were also applied. However, there is no report for the establishment of porcine ESCs. Indeed, ungulate species including pigs have crucial developmental differences unlike rodents and primates. Here we will review recent studies about issues for establishment of porcine ESCs and discuss the promise and strategies focusing on the timing for derivation and pluripotent state of porcine ESCs.

Effect of LPS and melatonin on early development of mouse embryo

  • Park, Haeun;Jang, Hoon;Choi, Youngsok
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.66-67
    • /
    • 2005
  • The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGC) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 day of incubation, and the gPGC were cultured in vitro until colony formed. After 7-10 days in cultured gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of thistype will serve as an important reference for germ cell biology and transgenic research.

  • PDF

Effect of Extrinsic Factors on Differentiated Cardiomyocyte-like Cells from Human Embryonic Stem Cells

  • Gil, Chang-Hyun;Jang, Jae-Woo;Lee, Won-Young;Park, Ze-Won;Lee, Jae-Ho;Chung, Sun-Hwa;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.263-271
    • /
    • 2009
  • Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst-stage embryos spontaneously have ability to differentiate via embryo-like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte-like cells differentiation from hESCs by treatment of induced-factors, 5-azacytidine, BMP-4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte-like cells showed that cardiac markers are expressed for further analysis by RT-PCR and immunocytochemistry. Interestingly, BMP-4 greatly improved homogeneous population of the cardiomyocyte-like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.

Effect of cell-penetrating peptide-conjugated estrogen-related receptor ${\beta}$ on the development of mouse embryos cultured in vitro

  • Yang, Ning Jie;Seol, Dong-Won;Jo, Junghyun;Jang, Hyun Mee;Yoon, Sook-Young;Lee, Dong Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Objective: Estrogen related receptor ${\beta}$ (Esrrb) is a member of the orphan nuclear receptors and may regulate the expression of pluripotencyrelated genes, such as Oct4 and Nanog. Therefore, in the present study, we have developed a method for delivering exogenous ESRRB recombinant protein into embryos by using cell-penetrating peptide (CPP) conjugation and have analyzed their effect on embryonic development. Methods: Mouse oocytes and embryos were obtained from superovulated mice. The expression of Oct4 mRNA and the cell number of inner cell mass (ICM) in the in vitro-derived and in vivo-derived blastocysts were first analyzed by real time-reverse transcription-polymerase chain reaction and differential staining. Then 8-cell embryos were cultured in KSOM media with or without $2{\mu}g/mL$ CPP-ESRRB protein for 24 to 48 hours, followed by checking their integration into embryos during in vitro culture by Western blot and immunocytochemistry. Results: Expression of Oct4 and the cell number of ICM were lower in the in vitro-derived blastocysts than in the in vivo-derived ones (p<0.05). In the blastocysts derived from the CPP-ESRRB-treated group, expression of Oct4 was greater than in the non-treated groups (p<0.05). Although no difference in embryonic development was observed between the treated and non-treated groups, the cell number of ICM was greater in the CPP-ESRRB-treated group. Conclusion: Treatment of CPP-ESRRB during cultivation could increase embryos' expression of Oct4 and the formation rate of the ICM in the blastocyst. Additionally, an exogenous delivery system of CPP-conjugated protein would be a useful tool for improving embryo culture systems.