• 제목/요약/키워드: Embryonic Stage

검색결과 403건 처리시간 0.023초

Examination Of The Migratory Ability Of Primordial Germ Cells From Embryonic Gonads At Different Developmental Stages In Quail

  • Kim, Duk-Kyung;Park, Tae ub;Lee, Yong-Mok;Kim, Mi-Ah;Kim, Gwi-Sook;Kim, Ki-Dong;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2000년도 제17차 정기총회 및 학술발표
    • /
    • pp.75-77
    • /
    • 2000
  • Retaining migratory activity is a prerequisite for the manipulation and use of PGCs. This study was conducted to examine whether migratory activity is retained in the primordial germ cells(PGCs) from gonads at the later embryonic developmental stage. In the present study, gonads were dissected from 5-, 6- and 10-day-old quail embryos and treated with trypsin-EDTA for the degradation of gonadal tissue. Gonadal PGCs (gPGCs) were purified by Ficoll density gradient centrifugation and labeled with PKH26 fluorescent dye. The PKH26-labeled gPGCs were microinjected into the blood vessels of recipient quail embryo. After further incubation of 3 days, the manipulated recipients were embedded in paraffin and sectioned. The gPGCs were detected by their fluorescence under the fluorescent microscopy and the confocal laser microscopy. As a result, 10-day-old quail gPGCs as well as 5-and 6-day-old gPGCs, could migrate to recipient embryonic gonads and settle down. These results suggest that the 10-day-old gPGCs have the properties of circulating PGCs at early stage. Therefore the PGCs from 10-day old embryonic gonads can be used for the tools of genetic manipulation.

  • PDF

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.

Enhancement of Re-closure Capacity by the Intra-amniotic Injection of Human Embryonic Stem Cells in Surgically Induced Spinal Open Neural Tube Defects in Chick Embryos

  • Lee, Gun-Soup;Lee, Do-Hun;Kim, Eun-Young;Wang, Kyu-Chang;Lee, Won-Don;Park, Sepill;Lim, Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.275-275
    • /
    • 2004
  • To evaluate the potential of the stem cell therapy as a method for prenatal management of spinal open neural tube defect (ONTD), the influence of embryonic stem cells injected into the amniotic cavity on the re-closure capacity of spinal ONTD was investgated. Spinal neural tube was incised open for a length of 6 somites using chick embryos of Hamburger and Hamilton stage 18 or 19. (omitted)

  • PDF

홍삼 Polyamine 계 성분이 배양한 계배의 근육세포 성장에 미치는 영향 (A Dtudy on the Effect of Polyamines of Korean Red Ginseng on the Growth of Cultured Chichen Embryonic Muscle Cells)

  • 구향자;김영중
    • 약학회지
    • /
    • 제31권5호
    • /
    • pp.296-301
    • /
    • 1987
  • Polyamines of Korean red ginseng were extracted with 5% trichloroacetic acid and purified by ion exchange chromatography using Dowex-50Wx8 resin. Four spots having R$_f$ values of 0.19, 0.28, 0.35, and 0.45 were detected. It was observed under microscopy that those polyamines stimulated the growth and differentiation of chicken embryonic muscle cell. The development of muscle cells from the stage of myoblast to that of myotube was found to be enhanced by those polyamines. It was also observed that those polyamines most likely lengthened, the life-span of the cultured chicken embryonic skeletal muscle cells.

  • PDF

A Practical Protocol of Zebrafish Heart Rate Measurement for High School Students

  • Cho, Jeong Hoon
    • 통합자연과학논문집
    • /
    • 제14권4호
    • /
    • pp.155-158
    • /
    • 2021
  • To study the effects of hormones and neurotransmitters, zebrafish (Danio rerio) are a great substitute for water fleas (Daphnia). The zebrafish is an ideal vertebrate model because it has a transparent embryonic stage. It is easy to get consistent heart rate measurements in embryonic zebrafish when treating them with hormones and neurotransmitters. To observe the heart rate, two to three embryonic zebrafish are anesthetized with MS-222 and then transferred to a glass slide specifically designed for heart observation and easy application of various chemicals. After the heartbeats are counted for 2 minutes, apply either 100 µM epinephrine or 100 µM acetylcholine to the zebrafish. Wait 5, 10, and 20 minutes and count the heartbeats at each time point. All procedures are repeated three times. The final results are averaged and analyzed by using statistical methods. The above method which we have developed is practical enough for high school students to measure the heart rate in zebrafish under various conditions and to analyze the data set.

착상전기(着床前期)에 있어서 ICR Mouse의 태아(胎兒)에 대한 방사선(放射線) 개체(個體) Level 영향(影響)의 연구(硏究) (The Developmental Effects of Radiation on ICR Mouse Embryos in Preimplantation Stage)

  • 구연화
    • Journal of Radiation Protection and Research
    • /
    • 제21권4호
    • /
    • pp.273-284
    • /
    • 1996
  • 착상전기(着床前期}의 태아(胎兒)는 방사선(放射線)을 비롯한 많은 환경요인(環境要因)에 대하여 감수성(感受性)이 높은 개체(個體)임에도 불구하고 특히 이 시기는 임신부(姙娠婦)가 자각(自覺)적으로 임신을 감지할 수 없는 시기이기에 이러한 여러 환경유해요인으로부터 의도적으로 피할 수가 없다. 그러므로 착상전기의 영향을 충분히 검토한 후에 의료행위를 취할 것이며 이에 대한 방어(防禦)대책도 검토할 필요가 있다. 종래 까지 방사선에 대한 태아영향에 관한 많은 연구결과에 의하면 방사선 및 그 외의 유해요인에 대한 착상전기의 영향은 배사망(胚死亡)(유산(流産))만이 일어나며 기형(奇形)은 유발(誘發)하지 않는다고 하여 발생학(發生學)등 여러 교과서에서 기형은 기관형성기(器官形戚期)만이 국한(局限)해서 일어나는 영향이라고 단정되어 왔었다. 그러나 이 연구결과 착상전기에 있어서도 기형이 유발하여 오히려 기관형성기((器官形成期)보다도 감수성이 높다는 것이다. 또한 착상전기에서도 기형유발의 시기특이성을 가지며 여러 종류의 기형이 발생한다는 것이 본 연구로부터 밝혀졌다. 실험동물은 ICR Mouse를 사용했다. ICR Mouse는 일반적으로 태아사망 및 기형실험에 널리 사용되는 것이다. 사육조건은 Conventional 한 조건하에서 사육했으며 Mating 방법(方法)은 Female 마우스의 발정기(Sexual Excitement period)에 있는 mouse 질(膣)을 육안 적으로 관찰하여 $AM 6:00{\sim}AM 9:00$시까지 3시간만 mate시켰다. AM9:00시에 Vaginal Plug를 관찰하여 임신을 확인했다. Plug가 확인 된 마우스는 AM8:00시에 수정(Conception)된 것으로 가정하고 이 시점을 임신 0일 0시로 수정 난의 태아연령을 산정했다. 방사선조사는 $^{135}Cs\;{\gamma}-$선을 사용하였으며 임신 마우스의 전신조사를 실시하고 조사한 시기는 각 2, 48, 72, 96hpc이며 조사한 방사선 선량 군은 $0.1{\sim}2.5Gy$이다. 태아영향 관찰지표는 태아 연령은 mate일 오전 8:00시를 임신 0일 0시로 환산하여 태아연령 18일에 임신마우스를 Cervical vertebral dislocation에 의해 도살했다. 도살 후 해부하여 각 임신 마우스별로 관찰했다. 착상 율을 관찰하기 위하여 황체수를 세었고, 태아사망과 생존태아를 구별했다. 자궁 내 사망의 분류는 태아사망을 1) preimplantation death 2) Embryonic death 3) Fetal death로 분류했다. 착상전사망은 수정후 $0{\sim}4.5$일(1세포기${\sim}$배반포후기 부화까지)까지의 사망으로써 난소의 황체수(배란 수)와 착상태아(생존태아, 착상흔, 태반유잔, 흡수태아, 침연태아의 합계)로부터 구할 수 있다. Embonic death는 수정 후 $4.5{\sim}13$일까지의 사망으로써 Implantation sites, Placental remnants, Resorption of fetus로 관찰된 것이다. Fetal death는 수정후 $14{\sim}18$일까지의 사망으로써 Maceration of fetus로 관찰되는 것이다. 통계학적 분석은 각 Group의 착상 을과 자궁 내 사망 율을 산출할 때에는 각 임신마우스에 따라 발생빈도가 크게 다르기 때문에 통계처리에는 Non parametric 검정인 Kluskal Wallis 검정을 사용하여 분석하였다. 또한 개체 Level 영향인 착상을, 태아사망, 기형의 threshold dose의 산정에 대해서는 SAS-Logistic 검정에 따라 통계 분석을 하여 $5%(Ld_5,\;ED_5)$$10%{\times}2/3$점을 threshold dose로 판단했다. 태아체 중에 대해서는 parametric검정인 t-test검정에 의하여 분석했다. 그 결과 착상전기에서도 기형이 유발하며 특히 시기에 따라 일어나는 때와 일어나지 않는 때가 있음을 본 연구로부터 밝혀졌다. 또한 착상전기의 영향으로써 유발되는 기형은 여러 종류의 기형이 발생함이 밝혀졌다. 특히 이시기는 착상전 사망 및 배(胚)사망은 방사선 선량에 따라 크게 일어나나 태아사망(Fetal death) 및 태아체중은 유의차(有意差)가 없었다.

  • PDF

Detrimental Effect of Bovine Serum Albumin in a Maturation Medium on Embryonic Development after Somatic Cell Nuclear Transfer in Pigs

  • Lee, Hanna;Lee, Yongjin;Park, Bola;Elahi, Fazle;Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Park, Choon-Keun;Hyun, Sang-Hwan;Lee, Eunsong
    • 한국수정란이식학회지
    • /
    • 제29권4호
    • /
    • pp.361-368
    • /
    • 2014
  • This study was designed to evaluate the effect of bovine serum albumin (BSA) in a maturation medium on oocyte maturation and embryonic development in pigs. Immature pig oocytes were matured for 44 h in a medium supplemented with 0.4% (w/v) BSA, 0.1% (w/v) polyvinyl alcohol (PVA), or 10% (v/v) pig follicular fluid (PFF). After IVM, oocytes reached metaphase II stage were activated for parthenogenesis (PA) or used as cytoplasts for somatic cell nuclear transfer (SCNT). Nuclear maturation (89.5%, 90.7% and 91.3% for BSA, PVA and PFF, respectively) and intraoocyte glutathione contents (1.20, 1.16 and 1.00 pixels/oocyte for BSA, PVA and PFF, respectively) were not altered by the macromolecules added to maturation medium. IVM of oocytes in a medium containing BSA (21.4%) and PVA (20.7%) showed significantly lower blastocyst formation after PA than culture in medium with PFF (39.2%). After SCNT, oocytes matured in medium with BSA showed decreased embryonic development to the blastocyst stage (9.2%) compared to those matured in medium with PFF (28.9%), while 23.6% of SCNT oocytes matured in medium with PVA developed to the blastocyst stage. When the effect of BSA in a maturation medium during the first 22 h and the second 22 h of IVM in combination with PFF or PVA was examined, PVA-BSA showed a higher nuclear maturation (94.1%) than BSA-PFF (84.5%). However, there was no significant difference in the blastocyst formation among tested combinations (47.3, 52.2, 50.0, 44.4 and 49.0% for PFF-PFF, PFF-BSA, PVA-BSA, BSA-PVA and BSA-PFF, respectively). Our results demonstrate that BSA and PVA added to maturation medium can support oocyte maturation comparable to PFF-supplemented medium. However, maturation of oocytes in a BSA-containing medium decreases embryonic development after PA and SCNT when compared with the medium supplemented with PFF.

Temporal Expression of RNA Polymerase II in Porcine Oocytes and Embryos

  • Oqani, Reza;Lee, Min Gu;Tao, Lin;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • 제36권4호
    • /
    • pp.237-241
    • /
    • 2012
  • Embryonic genome activation (EGA) is the first major transition that occurs after fertilization, and entails a dramatic reprogramming of gene expression that is essential for continued development. Although it has been suggested that EGA in porcine embryos starts at the four-cell stage, recent evidence indicates that EGA may commence even earlier; however, the molecular details of EGA remain incompletely understood. The RNA polymerase II of eukaryotes transcribes mRNAs and most small nuclear RNAs. The largest subunit of RNA polymerase II can become phosphorylated in the C-terminal domain. The unphosphorylated form of the RNA polymerase II largest subunit C-terminal domain (IIa) plays a role in initiation of transcription, and the phosphorylated form (IIo) is required for transcriptional elongation and mRNA splicing. In the present study, we explored the nuclear translocation, nuclear localization, and phosphorylation dynamics of the RNA polymerase II C-terminal domain in immature pig oocytes, mature oocytes, two-, four-, and eight-cell embryos, and the morula and blastocyst. To this end, we used antibodies specific for the IIa and IIo forms of RNA polymerase II to stain the proteins. Unphosphorylated RNA polymerase II stained strongly in the nuclei of germinal vesicle oocytes, whereas the phosphorylated form of the enzyme was confined to the chromatin of prophase I oocytes. After fertilization, both unphosphorylated and phosphorylated RNA polymerase II began to accumulate in the nuclei of early stage one-cell embryos, and this pattern was maintained through to the blastocyst stage. The results suggest that both porcine oocytes and early embryos are transcriptionally competent, and that transcription of embryonic genes during the first three cell cycles parallels expression of phosphorylated RNA polymerase II.

Renal Precursor Cell Transplantation Using Biodegradable Polymer Scaffolds

  • KIM , SANG-SOO;PARK, HEUNG-JAE;HAN, JOUNG-HO;PARK, MIN-SUN;PARK, MOON-HYANG;SONG, KANG-WON;JOO, KWAN-JOONG;CHOI, CHA-YONG;KIM, BYUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.105-111
    • /
    • 2005
  • End-stage renal disease is a fatal and devastating disease that is caused by progressive and irreversible loss of functioning nephrons in the kidney. Dialysis and renal transplantation are the common treatments at present, but these treatments have severe limitations. The present study investigated the possibility of reconstructing renal tissues by transplantation of renal precursor cells to replace the current treatments for end-stage renal disease. Embryonic renal precursor cells, freshly isolated from metanephroi of rat fetus at day 15 post-gestation, were seeded on biodegradable polymer scaffolds and transplanted into peritoneal cavities of athymic mice for three weeks. Histologic sections stained with hematoxylin & eosin and periodic acid-Schiff revealed the formation of primitive glomeruli, tubules, and blood vessels, suggesting the potential of embryonic renal precursor cells to reconstitute renal tissues. Immunohistochemical staining for proliferating cell nuclear antigen, a marker of proliferating cells, showed intensive nuclear expression in the regenerated renal structures, suggesting renal tissue reconstitution by transplanted embryonic renal precursor cells. This study demonstrates the reconstitution of renal tissue in vivo by transplanting renal precursor cells with biodegradable polymer scaffolds, which could be utilized as a new method for partial or full restoration of renal structure and function in the treatment of end-stage renal disease.

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2001년도 제18차 정기총회 및 학술발표 PROCEEDINGS
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF