• 제목/요약/키워드: Embryonic Development

검색결과 959건 처리시간 0.032초

생쥐 초기배아의 발생시기와 냉동보존 방법에 따른 발생률 (Development Rates of the Cryopreserved Mouse Embryos According to the Embryonic Stage and Cryopreservation Method)

  • 전용필;이호준;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제21권3호
    • /
    • pp.325-330
    • /
    • 1994
  • The study has been carried out in order to evaluate the effects of embryonic stage, and cryopreservation method on the rates of viability and development of the cryopreserved mouse early embryos. The results were as following:In the treatment steps of cryoprotectant, for the fertilized oocyte with pronucleus(PN), 2-step was better than the others. And for the other embryos, 4-step was better than 2- or 3-step. In respect to the embryonic stage, as the embryos developed from fertilized oocytes to 8-cell embryos, the rates of viability and development were increased higher. Therefore, 8-cell embryo was better stage than the others. In respect to the kind of cryoprotectants, PROH was better than DMSO for the fertilized oocyte, as a cryoprotectant. DMSO, for the 2-cell embryos and PROH and DMSO for the 4- and 8-cell embryos were suitable for cryopreservation.

  • PDF

A Comparative Study on the Parthenogenetic Development of Pig Oocytes Cultured in North Carolina State University-23 and Porcine Zygote Medium-3

  • Lee, Joo-Hyeong;Hyun, Sang-Hwan;Lee, Eun-Song
    • 한국수정란이식학회지
    • /
    • 제27권2호
    • /
    • pp.121-126
    • /
    • 2012
  • The objective of this study was to examine the effect of in vitro culture media on embryonic development of in vitro-matured (IVM) oocytes after parthenogenetic activation (PA) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 22~26 h. IVM oocytes were activated by electric pulses and cultured in porcine zygote medium-3 (PZM-3) and North Carolina State University-23 supplemented with essential and non-essential amino acids (NCSU-23aa). These media were further modified by supplementing 2.77 mM myo-inositol, 0.34 mM trisodium citrate, and $10{\mu}M$ ${\beta}$-mercaptoethanol (designated as mPZM-3 and mNCSU-23aa, respectively). Culture of PA embryos in mPZM-3 significantly increased development to the blastocyst stage than culture in NCSU-23aa (36.2% vs. 24.8%, p<0.05). Modified PZM-3 showed a significantly higher blastocyst formation than NCSU-23aa in both groups of embryos that were activated at 44 h and 48 h of IVM (51.0% vs. 35.5% and 49.0% vs. 34.2% in oocytes activated at 44 h and 48 h of IVM, respectively). Irrespective of the follicle diameter where oocytes were collected, embryonic development to the blastocyst stage was increased (p<0.05) by the culture in mPZM-3 compared to culture in NCSU-23aa (25.9% vs. 34.2% and 32.9% vs. 44.8% in embryos derived from small and medium size follicles, respectively). Our results demonstrated that culture media had significant effect on preimplantation development PA embryos and that mPZM-3 was superior to mNCSU-23 in supporting development to the blastocyst stage in pigs. This beneficial effect of mPZM-3 on embryonic development was not impaired by other factors such as time of oocyte activation and origin of immature oocytes (small and medium size follicles).

Indomethacin이 생쥐 착상전 배아의 발생 및 부화에 미치는 영향 (Effects of Indomethacin on Development and Hatching of Mouse Embryo)

  • 전용필;계명찬;김정훈;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제24권1호
    • /
    • pp.35-42
    • /
    • 1997
  • The present study was designed to define the role of prostaglandin in the development and hatching of mouse embryo. The effects of indomethacin, an inhibitor of prostaglandin synthesis, on the development and hatching of morula and blastocyst were examined. In early morula stage, embryos were degenerated significantly at 100 ${\mu}M$ and 200 ${\mu}M$ indomethacin. However, the viability of embryos was not influenced by concentration in any other embryonic stages. In all embryonic stages, the hatching was suppressed with concentration dependent manner, but expansion was not suppressed. Particularly, in 84h embryos post hCG injection, the hatching was suppressed significantly compared with post hCG 72h or 96h embryos. When embryos were treated with 100 ${\mu}M$ indomethacin for a specific time (12h) in according to the development stage, the hatching was suppressed all groups. These suppressional effect was decreased as embryonic development stage was progressed. However, the expansion was not affected in all treatment group. This study suggests that hatching-related metabolic substances are synthesized from morula stage and intraembryonic signaling mediated prostaglandin was important for development and hatching of mouse embryo.

  • PDF

영국의 배아관리체계와 공공정책의 선택 (Human Embryo Management System and Public Policy Options in the United Kingdom)

  • 황만성;한동운
    • 보건행정학회지
    • /
    • 제14권3호
    • /
    • pp.97-121
    • /
    • 2004
  • Recently, human embryonic stem cell research raises exciting public expectation on medical possibilities as well as ethical debate. Embryo management has become an integral part of the management of infertility treatment, researches on embryo and human embryonic stem cells and so on. Britain has permitted the research on stem cells derived from human embryo which made the first nation to allow the cloning of human embryo for the stem cell research. However, new technologies such as the assisted reproductive technologies and human embryonic stem cell research continue to pose an increasing source of ethical dilemmas for physician, scientists, legislators, religious authorities and the general publics to deal with. None the less, the United Kingdom has adopted the most liberal policies regarding human embryo and human embryonic stem cell research. The implication of the British embryo management system are as follows: 1) the development of reproductive technologies and new stem cell research technologies continue to pose legal and ethical debates, since those involve several parties; 2) the UK has taken the legal and institutional approaches to cope with those serious issues; 3) the UK adopted most liberal policies regarding embryonic and human embryonic stem cell researches; 4) the British HFE Act is consistent with the existing Acts related to human embryo management and researches; 5) through amending the HFE Act to accomodate the changes of technologies, the UK try to minimize the legal and ethical burden on undertaking research regarding embryo. The debates about the researches on human embryo and human embryonic stem cells is likely to continue in the Korean society. Because of the controversy and competing ethical values, as well as the evolving technologies, so far no consensus exists in our society. It suggest that it is premature to bring closure by ruling out any particular approaches. Thus our society needs to make an efforts to find a basis which could resolve the societal controversies through enriching the societal conversation about the profound ethical issues regarding embryo management.

The Essential Function of miR-5739 in Embryonic Muscle Development

  • Ji-Heon Lee;Min Sup Kim;Jin-seop Lee;Dong Hyun Lee;Chansol Park;Dong Hyuk Lee;Eun-Young Kim;Hyung Min Chung
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.145-155
    • /
    • 2023
  • Background and Objectives: Embryologically, mesodermal development is closely related to the development of various organs such as muscles, blood vessels, and hearts, which are the main organs that make up the body. However, treatment for mesoderm developmental disorders caused by congenital or acquired factors has so far relied on surgery and drug treatment for symptom relief, and more fundamentally, treatment for mesoderm developmental disorders is needed. Methods and Results: In our study, microRNA (miRNA), which plays an important role in the mesoderm development process, was identified and the developmental function was evaluated. miRNAs consist of small nucleotides, which act as transcription factors that bind to the 3' untranslated region and suppressed target gene expression. We constructed the human embryonic stem cell (hESC) knockout cell line and analyzed the function and characteristics of miR-5739, which plays an important role in mesoderm lineage. miR-5739 acts as a transcription factor targeting SMA, Brachyury T, Hand1, which controls muscle proliferation and differentiation, and KDR gene, which regulates vessel formation in vitro. In vivo results suggest a role in regulating muscle proliferation and differentiation. Gene ontology analysis confirmed that the miR-5739 is closely related to genes that regulate muscle and vessel proliferation and differentiation. Importantly, abnormal expression of miR-5739 was detected in somatic cells derived from patients with congenital muscle disease. Conclusions: Our study demonstrate that miR-5739 gene function significantly affects transcriptional circuits that regulate muscle and vascular differentiation during embryonic development.

Transgenesis and Germ Cell Engineering in Domestic Animals

  • Lee, C.K.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.910-927
    • /
    • 2003
  • Transgenesis is a very powerful tool not only to help understanding the basics of life science but also to improve the efficiency of animal production. Since the first transgenic mouse was born in 1980, rapid development and wide application of this technique have been made in laboratory animals as well as in domestic animals. Although pronuclear injection is the most widely used method and nuclear transfer using somatic cells broadens the choice of making transgenic domestic animals, the demand for precise manipulation of the genome leads to the utilization of gene targeting. To make this technique possible, a pluripotent embryonic cell line such as embryonic stem (ES) cell is required to carry genetic mutation to further generations. However, ES cell, well established in mice, is not available in domestic animals even though many attempt to establish the cell line. An alternate source of pluripotent cells is embryonic germ (EG) cells derived from primordial germ cells (PGCs). To make gene targeting feasible in this cell line, a better culture system would help to minimize the unnecessary loss of cells in vitro. In this review, general methods to produce transgenic domestic animals will be mentioned. Also, it will focus on germ cell engineering and methods to improve the establishment of pluripotent embryonic cell lines in domestic animals.

Plant regeneration from the root-derived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis

  • Kim, Suk Weon;Oh, Myung Jin;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.341-345
    • /
    • 2009
  • This study describes culture conditions for a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis in root explant cultures of the commercial rose cultivar 'Charming'. Root explants formed white calluses at a frequency of 30% after 6 weeks of culture on Schenk and Hildebrandt (SH) medium supplemented with $11mg\;1^{-1}$ 2,4-dichlorophenoxyacetic acid. After 6 weeks of transfer to SH medium without growth regulators, initial white calluses gave rise to globular somatic embryos at a frequency of 2.8%, which were subsequently dedifferentiated to embryonic tissues. Somatic embryos or embryonic tissues initially derived from root explants did not undergo development beyond cotyledonary stage. To produce adventitious shoots, embryonic tissues were sliced and cultured on SH medium with $0.5mg\;1^{-1}$ 6-benzyladenine. After 4 weeks of culture, 28% of embryonic tissue explants formed adventitious shoots. Regenerated shoots were rooted on half strength SH medium with $0.1mg\;1^{-1}$ ${\alpha}-naphthalaneacetic$ acid and subsequently grown to maturity. Root-derived embryonic tissues were proliferated by subculture, while retaining the capacity for shoot production for a few years.

Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction

  • Islam Mohamed Saadeldin;Seif Ehab;Ahmed Elsayed Noreldin;Ayman Abdel-Aziz Swelum;Seonggyu Bang;Hyejin Kim;Ki Young Yoon;Sanghoon Lee;Jongki Cho
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.40.1-40.19
    • /
    • 2024
  • Importance: The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. Observations: This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. Conclusions and Relevance: This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.

GABAergic neuronal development in the embryonic mesencephalon of mice

  • Kim, Mun-Ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chung-Kil
    • 대한수의학회지
    • /
    • 제59권4호
    • /
    • pp.201-205
    • /
    • 2019
  • This study presents neurogenesis and neuronal migration patterns of gamma-aminobutyric acid-ergic (GABAergic) neurons during mesencephalic development of mouse. After neurons from embryonic day (E) 10-16 were labelled by a single injection of 5-bromo-2'-deoxyuridine (BrdU), immunohistochemistry was performed. Neurogenesis were mainly generated in the mesencephalic region at E10 to E13. After E14, BrdU positive cells were observed only in the dorsal mesencephalon. GABAergic neurons were mainly originated in the ventrolateral region of the mesencephalon at the early embryonic stage, especially at E11 to E13. E10-labeled cells showed positive for GABAergic neuron in the basal plate of the mesencephalon at E13. At E15, GABAergic neurons were observed in the entire basal plate and some regions of the ventral and dorsal mesencephalon. They were present in the whole basal plate, the ventral and dorsal mesencephalon of E17, spreading more outward of the mesencephalon at P0. Our study demonstrates that major neurogenesis of GABAergic neurons occurs at E11 to E13. However, neuronal migration continues until neonatal period during mesencephalic development.

Cytoskeletal Alteration of Mammalian Oocytes During Meiotic Maturation, Fertilization and Parthenogenesis

  • 김남형
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제22권3호
    • /
    • pp.253-258
    • /
    • 1995
  • Microtubules and microfilaments are major cytoskeletal components in mammalian ova that provide the framework for chromosomal movement and cellular division. Extensive changes of cytoskeletal organization occur during maturation and fertilization. The changes in cytoskeletons are essential for the normal meiotic maturation and for the formation of the biparental diploid genome of the embryo, and thus are repeated at each cell cycle during embryonic development. Disturbance of the cytoskeletal organization could result in abnormal gamete development and early embryonic death.

  • PDF