• Title/Summary/Keyword: Embryo-toxicity

Search Result 126, Processing Time 0.026 seconds

Toxic Effect of Cryoprotectants on Embryo Development in a Murine Model (생쥐모델을 이용한 동결보존제의 독성조사)

  • Yang, Kwan-Cheal;Kang, Hee-Gyoo;Lee, Hoi-Chang;Lee, Hyang-Heun;Ko, Duck-Sung;Yang, Hyun-Won;Park, Won-Il;Park, Eun-Joo;Kim, S. Samuel
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Objectives: The aim of this study was to assess toxicities of cryoprotectants. Methods: Toxicities of two cryoprotectants, dimethyl sulfoxide (DMSO) and 1, 2-propanediol (PROH), were investigated using a murine embryo model. Female F-1 mice were stimulated with gonadotropin, induced ovulation with hCG and mated. Two cell embryos were collected and cultured after exposure to either DMSO or PROH. Embryo development was evaluated up to the blastocyst stage. Blastocysts were stained with bis-benzimide to evaluate the cell count and with terminal deoxynucleotidyl transferase mediated dUTP nick labeling (TUNEL) to assess apoptosis. Results: The total cell count of blastocysts that were treated with DMSO at the 2-cell stage was significantly lower than that were treated with PROH ($75.9{\pm}27.0$) or the control ($99.0{\pm}18.3$) (p<0.001). On comparison of two cryoprotectant treated groups, the DMSO treated group showed a decreased cell count compared with the PROH treated group (p<0.05). Both DMSO ($14.2{\pm}1.5$) and PROH ($11.2{\pm}1.4$) treated groups showed higher apoptosis rates of cells in the blastocyst compared with the control ($6.2{\pm}0.9$, p<0.0001). In addition, the DMSO treated group showed more apoptotic cells than the PROH treated group (p<0.001). Conclusions: The potential toxicity of cryoprotectants was uncovered by prolonged exposure of murine embryos to either DMSO or PROH at room temperature. When comparing two cryoprotective agents, PROH appeared to be less toxic than DMSO at least in a murine embryo model.

A Study on the Evaluation of Teratogenecity of Chemical by Korean Brown Frog Embryo, Rana dybowskii (산개구리 배아를 활용한 화학물질의 기형성 평가에 관한 연구)

  • Ko Sun-Kun
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.3
    • /
    • pp.333-339
    • /
    • 2004
  • The Frog Embryo Teratogenesis Assay-Xenopus(FETAX) protocol was recently adopted as a valuable tool fur evaluating chemical toxicity and the effect of environmental contaminants in frogs. In this study, the teratogenecity of NiCl$_2$, Carbofuran, Diazinon were determined in the Korean frog, Rana dybowskii using the FETAX protocol. The mortality rate and the percentage of malformed larvae were investigated by probit analysis, The teratogenic concentrations(EC$_{50}$) of NiCl$_2$, Carbofuran and Diazinon were 0.4 and 1.6 and 1.9 mg/1. The embryolethal concentrations(LC$_{50}$) of NiCl$_2$, Carbofuran and Diazinon were 17.6 and 41.5 and 20.2mg/1. The teratogenic indices (TI=LC$_{50}$/EC$_{50}$) were 43.8 for NiCl$_2$, 26.0 for Carbofuran and 10.6 for Diazinon. NiCl$_2$, Carbofuran and Diazinon were shown to be potent teratogens for Rana dybowskii embryo, causing concentration related increase of edema, tail and abdomen. The study results reveal that NiCl$_2$, Carbofuran and Diazinon suppress the development of embryos at relatively low concentrations. Therefore, the Rana dybowskii embryo teratogenesis assay system was proven to be a useful tool to evaluate the toxicity of environmental pollutants.lutants.

Effects of Exposure Period on the Developmental Toxicity of 2-Bromopropane in Sprague-Dawley Rats

  • Shin, In-Sik;Lee, Jong-Chan;Kim, Kang-Hyeon;Ahn, Tai-Hwan;Bae, Chun-Sik;Moon, Chang-Jong;Kim, Sung-Ho;Shin, Dong-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • Recently we reported that 2-bromopropane (2-BP) has maternal toxicity, embryotoxicity, and teratogenicity in Sprague-Dawley rats. The aims of this study are to examine the potential effects of 2-BP administration on pregnant dams and embryo-fetal development, and to investigate the effects of metabolic activation induced by phenobarbital (PB) on developmental toxicities of 2-BP. Pregnant rats received 1000 mg/kg/day subcutaneous 2-BP injections on gestational days (GD) 6 through 10 (Group II and Group IIII) or 11 through 15 (Group IV). Pregnant rats in Group III received an intraperitoneal PB injection once daily at 80 mg/kg/day on GD 3 through 5 for induction of the liver metabolic enzyme system. Control rats received vehicle injections only on GD 6 through 15. All dams underwent caesarean sections on GD 20 and their fetuses were examined for external, visceral, and skeletal abnormalities. Significant adverse effects on pregnant dams and embryo-fetal development were observed in all the treatment groups, and the maternal and embryo-fetal effects of 2-BP observed in Group II were higher than those seen in Group IV. Conversely, maternal and embryo-fetal developmental toxicities observed in Group III were comparable to those seen in Group II. These results suggest that the potential effects of 2-BP on pregnant dams and embryo-fetal development are more likely in the first half of organogenesis (days $6{\sim}10$ of pregnancy) than in the second half and that the metabolic activation induced by PB pre-treatment did not modify the developmental toxic effects of 2-BP in rats.

Studies on Toxicological Evaluation of Pesticides(Fungicide, Insecticide, Herbicide) using Tree Frog Embryos, Hyla japonica (청개구리 배아를 활용한 농약류(살균제, 살충제, 제초제)의 독성평가 연구)

  • Yoon, Pil-Sang;Ko, Sun-Kun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.178-186
    • /
    • 2019
  • This study used the probit analysis to evaluate the toxicity of three chemicals - benomyl (Germicide), carbofuran (insecticide), and thiobencarb (herbicide) - with the FETAX (Frog Embryo Teratogenesis Assay-Xenopus) protocol using the incubated embryos of tree frog, Hyla japonica. The results showed that the larval body length decreased while the mortality and malformation rates increased as the concentrations of benomyl, carbofuran, and thiobencarb increased. The teratogenic concentration ($EC_{50}$) of benomyl, carbofuran, and thiobencarb were 1.00, 0.58, 4.75 mg/L, respectively, indicating that the malformation of larvae was the most sensitive to carbofuran. The embryo lethal concentration ($LC_{50}$) was 7.04, 28.71, and 16.12mg/L, respectively, indicating that benomyl showed the lowest embryo lethal concentration. The teratogenic index (TI) was 7.04 in Benomyl, 49.50 in Carbofuran, and 3.39 in Thiobencarb, indicating that the TI values were above 1.5, which is the criterion of teratogenicity, for all three chemicals. All three pesticides examined by this study were considered to be the most teratogenic substances, and the carbofuran was the most potent teratogen.

Inhibitory effect of luthione on tacrolimus-induced DNA damage, apoptosis and inflammatory response in olive flounder natural embryo cells (넙치 배아세포에서 tacrolimus에 의한 DNA 손상, 세포사멸 및 염증성 반응에 대한 luthione의 억제 효과)

  • Park, Sang Eun;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Tacrolimus, a type of macrolide produced by Streptomyces tsukubaensis, is widely used as an immunosuppressant. However, continuous exposure to tacrolimus causes oxidative stress in normal cells, ultimately inducing cell injury. Therefore, this study investigated whether luthione, a reduced glutathione, could inhibit tacrolimus-induced cytotoxicity in olive flounder (hirame) natural embryo (HINAE) cells. According to the results, luthione significantly inhibited tacrolimus-induced reduction in cell viability in a concentration-dependent manner. Additinally, although luthione unaffected autophagy by tacrolimus, tacrolimus-induced apoptosis was significantly suppressed in the presence of luthione. Luthione also markedly blocked DNA damage in tacrolimus-treated HINAE cells, associated with the inhibition of reactive oxygen species (ROS) generation. Additionally, tacrolimus cytotoxicity in HINAE cells was correlated with increased inflammatory response, also attenuated by luthione. Collectively, these results show that at least luthione protects HINAE cells against tacrolimus-induced DNA damage, apoptosis, and inflammation, but not autophagy, by scavenging ROS. Although additional in-vivo studies are required, this study's results can be used as a basis for utilizing luthione to reduce the toxicity of fish cells caused by excessive immune responses.

Study on Development Effect on Zebrafish Embryo by Alacholr, Butachlor and Fipronil (농약 alacholr, butachlor 및 fipronil이 제브라피쉬 배아 발생에 미치는 영향)

  • Park, Soo Jin;Jeong, Mihye;Paik, Min-Kyoung;Lee, Je-Bong;You, Are-Sun;Hong, SoonSung;Ihm, Yang Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • This study is aimed to search the possibility of developmental toxicity test using the zebrafish from the pesticide. We selected herbicides alachlor and butachlor, reported for fish toxicity, and insecticide fipronil reported for the high fish toxicity and the honey bee risk among the pesticides with high usability for the examples of the pesticides in this experiment. In this study, we showed those effects on the zebrafish embryo development by exposing different kinds of pesticide with different concentration and exposed time periods. As a result, the rates of hatching and abnormality of the zebrafish embryo after treatments of alachlor were increased in 24-48 hpf group, and the juvenile fishes in every group exposed to $40{\mu}M$ or more of alachlor displayed sever morphological changes such as bent tails, edema and activity failures. In case of the butachlor, the rates of hatching and the abnormality in 24-48 hpf group were higher than the other groups exposed in different time periods. The fatality before hatching was high in $40{\mu}M$ or more of butachlor treatment, and entire zebrafish embryos in 48 hpf group died before hatching. All the living juvenile fishes showed morphological changes as like as the treatment of alachlor. The rate of hatching and the survival of the zebrafish embryo by the fipronil were higher than other pesticides. However, morphological changes such as bent tails were observed from the most of living juvenile fishes. Therefore, the effects of three different pesticides with different concentrations and exposing time periods on the development of zebrafish embryos showed that all the pesticides effects were proportional to the concentration, and exposing time periods may cause the morphological abnormality.

Early Life Stage Toxicity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Crucian Carp (Carassius auratus) (붕어 수정란을 이용한 다이옥신의 초기발생단계 독성평가)

  • Park, Yong-Joo;Kim, Ha-Ryong;Lee, Min-Jee;Lee, Wan-Ok;Lee, Jung-Sick;Chung, Kyu-Hyuck;Oh, Seung-Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.241-251
    • /
    • 2010
  • Crucian carp (Carassius auratus) has been used as the sentinel species for POPs (Persistent Organic Pollutants) monitoring in aquatic environment. However, there is little information for dioxin toxicity and especially, early life stage toxicity in crucian carp have been never carried out. In this study, we investigated several toxic effects for 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in fertilized egg obtained by natural fertilization from crucian carp. The embryos at 3 h post-fertilization (hpf) were treated with 0.039, 0.156, 0.625, and 2.5 (${\mu}g/L$) TCDD by waterborne exposure for 60 minutes and changed with fresh water 2 times per day. Fertilized eggs started hatching at 51 hpf and TCDD exposed embryo showed decrease of hatching rate in a dose-dependent manner at 75 hpf. Pericardial edema was continuously observed in larvae exposed to TCDD from hatching start time (51 hpf), followed by the onset of mortality. In addition, AhR-related gene, CYP1A was clearly increased by TCDD in a dose dependent manner. These results indicated that fertilized eggs obtained from crucian carp have the TCDD related gene regulation and a distinct TCDD developmental toxicity syndrome by TCDD exposure. Therefore, we suggested that early life stage test in crucian carp could be used as test methods on dioxins toxicity.

Developmental Toxicity Study of 2-Bromopropane in Icr Mice

  • Her, Jeong-Doo;Kim, Jong-Choon;Kim, Moo-Kang;Yasuo Tarumoto;Chung, Moon-Koo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.116-116
    • /
    • 2003
  • 2-Bromopropane (2-BP), a halogenated propane analogue, is a substitute for chlorofluorocarbones (CFCs) which have a great potential to destroy the ozone layer and to warm the earth's environment. The present study was undertaken to evaluate the potential adverse effects of 2-BP on pregnant dams and embryo-fetal development after maternal exposure during the gestational days (GO) 6 through 17 in ICR mice.(omitted)

  • PDF

PRE- AND POSTNATAL TOXICITY EVALUATION OF 60 Hz HORIZONTALLY POLARIZED MAGNETIC FIELDS IN RATS

  • Chung, Moon-Koo;Kim, Jong-Choon;Myung, Sung-Ho;Han, Sang-Seop
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.133-133
    • /
    • 2002
  • Recently, there is an increasing nationwide concern in Korea that exposure to electric and magnetic fields (MF) in the home environment may not be safe in humans. We previously demonstrated that exposure of MF during the entire period of pregnancy did not induce any adverse effects on both pregnant dams and embryo-fetal development in rats.(omitted)

  • PDF