• 제목/요약/키워드: Embryo implantation

검색결과 229건 처리시간 0.023초

Mixed double-embryo transfer: A promising approach for patients with repeated implantation failure

  • Stamenov, Georgi Stamenov;Parvanov, Dimitar Angelov;Chaushev, Todor Angelov
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제44권2호
    • /
    • pp.105-110
    • /
    • 2017
  • Objective: The purpose of this study was to evaluate the efficacy of frozen mixed double-embryo transfer (MDET; the simultaneous transfer of day 3 and day 5 embryos) in comparison with frozen blastocyst double-embryo transfer (BDET; transfer of two day 5 blastocysts) in patients with repeated implantation failure (RIF). Methods: A total of 104 women with RIF who underwent frozen MDET (n = 48) or BDET (n = 56) with excellent-quality embryos were included in this retrospective analysis. All frozen embryo transfers were performed in natural cycles. The main outcome measures were the implantation rate, clinical pregnancy rate, multiple pregnancy rate, and miscarriage rate. These measures were compared between the patients who underwent MDET or BDET using the chi-square test or the Fisher exact test, as appropriate. Results: The implantation and clinical pregnancy rates were significantly higher in patients who underwent MDET than in those who underwent BDET (60.4% vs. 39.3%, p=0.03 and 52.1% vs. 30.4%, p=0.05, respectively). A significantly lower miscarriage rate was observed in the MDET group (6.9% vs. 10.7%, p=0.05). In addition, the multiple pregnancy rate was slightly, but not significantly, higher in the MDET group (27.1% vs. 25.0%). Conclusion: MDET was found to be significantly superior to double blastocyst transfer. It could be regarded as an appropriate approach to improve in vitro fertilization success rates in RIF patients.

Platelet-Activating Factor (PAF)가 생쥐의 배란, 초기배아의 발달 및 착상에 미치는 영향 (Effect of Platelet-Activating Factor (PAF) on Murine Ovulation, Early Embryo Development and Implantation)

  • 강길전;이영일
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제18권2호
    • /
    • pp.143-151
    • /
    • 1991
  • An embryo-derived platelet activating factor (PAF) has been demonstrated to play an important role in reproduction. This report examined the effect of PAF on ovulation, fertilization, embryo development, implantation and fetal viability by using murine model. PAF had no stimulatory effect on ovulation and fertilization. But PAF had stimulatory effect on embryo development in in-vitro test, in spite of no effect on implantation and fetal viability. These results demonstrate that exogenous PAF could enhance embryo development and implantation and give suggestion that PAF may play an role in human IVF program.

  • PDF

Benzoic Acid Enhances Embryo Implantation through LIF-Dependent Expression of Integrin αVβ3 and αVβ5

  • Choi, Hee-Jung;Chung, Tae-Wook;Park, Mi-Ju;Kim, Hyung Sik;You, Sooseong;Lee, Myeong Soo;Joo, Bo Sun;Lee, Kyu Sup;Kim, Keuk-Jun;Wee, Gabbine;Kim, Choong-Yong;Kim, Cheorl-Ho;Ha, Ki-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.668-677
    • /
    • 2017
  • Embryo implantation is the crucial step for a successful pregnancy. Diverse factors, including adhesion molecules, growth factors, and cytokines are important for embryo implantation through improving endometrial receptivity. Benzoic acid (BA), a component of various plants, has been shown to have antifungal and antioxidant effects. However, the effect of BA on embryo implantation remains unknown. Here, we showed the contribution of BA for the enhancement of endometrial receptivity through the leukemia inhibitory factor (LIF)-dependent increase of integrin ${\alpha}V$, ${\beta}3$, and ${\beta}5$ expression. Furthermore, in vivo study using a mifepristone-induced implantation failure model showed that BA definitely improves the numbers of implantation embryos. Taken together, we suggest that BA has a novel function for embryo implantation through the up-regulation of LIF-mediated integrins, and may be a candidate for therapeutic medicine to increase the pregnancy rate.

Effects of human chorionic gonadotropin-producing peripheral blood mononuclear cells on the endometrial receptivity and implantation sites of the mouse uterus

  • Delsuz Rezaee;Mojgan Bandehpour;Bahram Kazemi;Sara Hosseini;Zeinab Dehghan;Saiyad Bastaminejad;Mohammad Salehi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권4호
    • /
    • pp.248-258
    • /
    • 2022
  • Objective: This research investigated the effects of human chorionic gonadotropin (HCG)-producing peripheral blood mononuclear cells (PBMCs) on the implantation rate and embryo attachment in mice. Methods: In this experimental study, a DNA fragment of the HCG gene was cloned into an expression vector, which was transfected into PBMCs. The concentration of the produced HCG was measured using enzyme-linked immunosorbent assay. Embryo attachment was investigated on the co-cultured endometrial cells and PBMCs in vitro. As an in vivo experiment, intrauterine administration of PBMCs was done in plaque-positive female mice. Studied mice were distributed into five groups: control, embryo implantation dysfunction (EID), EID with produced HCG, EID with PBMCs, and EID with HCG-producing PBMCs. Uterine horns were excised to characterize the number of implantation sites and pregnancy rate on day 7.5 post-coitum. During an implantation window, the mRNA expression of genes was evaluated using real-time polymerase chain reaction. Results: DNA fragments were cloned between the BamHI and EcoRI sites in the vector. About 465 pg/mL of HCG was produced in the transfected PBMCs. The attachment rate, pregnancy rate, and the number of implantation sites were substantially higher in the HCG-producing PBMCs group than in the other groups. Significantly elevated expression of the target genes was observed in the EID with HCG-producing PBMCs group. Conclusion: Alterations in gene expression following the intrauterine injection of HCG-producing PBMCs, could be considered a possible cause of increased embryo attachment rate, pregnancy rate, and the number of implantation sites.

Imprinted Gene mRNA Expression during Porcine Peri-implantation Development

  • Cha, Byung-Hyun;Kim, Bong-Ki;Hwang, Seongsoo;Yang, Byoung-Chul;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Kim, Myung-Jick;Seong, Hwan-Hoo;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.693-699
    • /
    • 2010
  • Imprinted genes are essential for fetal development, growth regulation, and postnatal behavior. However, little is known about imprinted genes in livestock. We hypothesized that certain putatively imprinted genes affected normal peri-implantation development such as embryo elongation, initial placental development, and preparation of implantation. The objective of the present study was to investigate the mRNA expression patterns of several putatively imprinted genes during the porcine peri-implantation stages from day 6 to day 21 of gestation. Imprinted genes were selected both maternally (Dlk1, IGF2, Ndn, and Sgce) and paternally (IGF2r, H19, Gnas and Xist). Here, we report that the maternally imprinted gene IGF2 was expressed from day 6 (Blastocyst stage), but Dlk1, Ndn, and Sgce were not expressed in this stage. These genes were first expressed between days 12 and day 14. All the maternally imprinted genes studied showed significantly high expression patterns from day 18 of embryo development. In contrast, paternally imprinted genes IGF2r, H19, Gnas, and Xist were first expressed from day 6 of embryo development (BL). Our data demonstrated that the expression of H19 and Gnas genes was significantly increased from day 14 of the embryo developmental stage, while IGF2r and Xist only showed high expression after day 21. This study is the first to show that the putatively imprinted genes were stage-specific during porcine embryonic development. These results demonstrate that the genes studied may exert important effects on embryo implantation and fetal development.

Peri-implanting 단계의 돼지배아 EST 연구 (The EST Study of the Peri-implanting Porcine Embryos)

  • 곽인석
    • 생명과학회지
    • /
    • 제19권5호
    • /
    • pp.587-592
    • /
    • 2009
  • 임신초기의 배아는 peri-implantation 단계에서 매우 극적인 형태학적변화가 일어나는데, 이는 임신 인식 인자로 작용하는 배아에서 제공된 signal(s)에 의해서 시작되어지며, 나아가서 모성자궁과 배아의 상호 신호전달이 임신의 시작과 유지에 필수적인 인자로 작용한다. 배아형태의 급격한 리모델링에 관련된 세포학적, 생화학적, 유전학적 연구를 위하여, 또한 자궁과 배아의 상호 신호전달에 관여하는 잠재적 유전자 군을 발굴하기 위하여, peri-implantation 시기의 돼지배아를 이용하여 expresses sequences tag (EST) 분석을 실행하였다. 돼지배아 EST 분석으로 임신초기 특히 전 착상 단계에서 발현되는 유전자들의 카탈로그(Transcriptome)를 작성하였다. 그중에서 6개의 clone을 선택하여 그 발현 양식을 배아 및 자궁 등에서 관찰한 결과, 각각의 유전자들은 조직, 세포 유형 및 임신 시기에 따른 특이적인 발현 현상을 나타내었다. 본 연구결과는, 배아와 자궁 내막에서의 유전자 발현이 임신 시기에 따라서 다이내믹한 상호 조절 작용을 하고 있음을 나타낸다. 이는 전 착상단계의 모성자궁에서 배아와 자궁 내막의 상호 신호전달이 전 착상 단계의 배아의 급격한 형태학적 변화를 가능하게하고 또한 착상에 필요한 적절한 자궁 내부 환경을 제공하고 있음을 보여준다.

Signaling Molecules at the Conceptus-Uterine Interface during Early Pregnancy in Pigs

  • Seo, Heewon;Choi, Yohan;Shim, Jangsoo;Kim, Mingoo;Ka, Hakhyun
    • 한국수정란이식학회지
    • /
    • 제27권4호
    • /
    • pp.211-221
    • /
    • 2012
  • The process of embryo implantation requires physical contact and physiological communication between the conceptus trophectoderm and the maternal uterine endometrium. During the peri-implantation period in pigs, the conceptus undergoes significant morphological changes and secretes estrogens, the signal for maternal recognition of pregnancy. Estrogens secreted from the conceptus act on uterine epithelia to redirect $PGF_2{\alpha}$, luteolysin, secretion from the uterine vasculature to the uterine lumen to prevent luteolysis as well as to induce expression of endometrial genes that support implantation and conceptus development. In addition, conceptuses secrete cytokines, interferons, growth factors, and proteases, and in response to these signals, the uterine endometrium produces hormones, protease inhibitors, growth factors, transport proteins, adhesion molecules, lipid molecules, and calcium regulatory molecules. Coordinated interactions of these factors derived from the conceptus and the uterus play important roles in the process of implantation in pigs. To better understand mechanism of implantation process in pigs, this review provides information on signaling molecules at the conceptus-uterine interface during early pregnancy, including recently reported data reported.

Endometrial profilin 1: A key player in embryo-endometrial crosstalk

  • Lee, Chang-Jin;Hong, Seon-Hwa;Yoon, Min-Ji;Lee, Kyung-Ah;Ko, Jung-Jae;Koo, Hwa Seon;Kim, Jee Hyun;Choi, Dong Hee;Kwon, Hwang;Kang, Youn-Jung
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권2호
    • /
    • pp.114-121
    • /
    • 2020
  • Objective: Despite extensive research on implantation failure, little is known about the molecular mechanisms underlying the crosstalk between the embryo and the maternal endometrium, which is critical for successful pregnancy. Profilin 1 (PFN1), which is expressed both in the embryo and in the endometrial epithelium, acts as a potent regulator of actin polymerization and the cytoskeletal network. In this study, we identified the specific role of endometrial PFN1 during embryo implantation. Methods: Morphological alterations depending on the status of PFN1 expression were assessed in PFN1-depleted or control cells grown on Matrigel-coated cover glass. Day-5 mouse embryos were cocultured with Ishikawa cells. Comparisons of the rates of F-actin formation and embryo attachment were performed by measuring the stability of the attached embryo onto PFN1-depleted or control cells. Results: Depletion of PFN1 in endometrial epithelial cells induced a significant reduction in cell-cell adhesion displaying less formation of colonies and a more circular cell shape. Mouse embryos co-cultured with PFN1-depleted cells failed to form actin cytoskeletal networks, whereas more F-actin formation in the direction of surrounding PFN1-intact endometrial epithelial cells was detected. Furthermore, significantly lower embryo attachment stability was observed in PFN1-depleted cells than in control cells. This may have been due to reduced endometrial receptivity caused by impaired actin cytoskeletal networks associated with PFN1 deficiency. Conclusion: These observations definitively demonstrate an important role of PFN1 in mediating cell-cell adhesion during the initial stage of embryo implantation and suggest a potential therapeutic target or novel biomarker for patients suffering from implantation failure.

Efficacy of oxytocin antagonist infusion in improving in vitro fertilization outcomes on the day of embryo transfer: A meta-analysis

  • Kim, Seul Ki;Han, E-Jung;Kim, Sun Mie;Lee, Jung Ryeol;Jee, Byung Chul;Suh, Chang Suk;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권4호
    • /
    • pp.233-239
    • /
    • 2016
  • Objective: Uterine contraction induced by the embryo transfer (ET) process has an adverse effect on embryo implantation. The aim of this study was to determine the effect of oxytocin antagonist supplementation on the day of ET on in vitro fertilization outcomes via a meta-analysis. Methods: We performed a meta-analysis of randomized controlled trials (RCTs). Four online databases (Embase, Medline, PubMed, and Cochrane Library) were searched through May 2015 for RCTs that investigated oxytocin antagonist supplementation on the day of ET. Studies were selected according to predefined inclusion criteria and meta-analyzed using RevMan 5.3. Only RCTs were included in this study. The main outcome measures were the clinical pregnancy rate, the implantation rate, and the miscarriage rate. Results: A total of 123 studies were reviewed and assessed for eligibility. Three RCTs, which included 1,020 patients, met the selection criteria. The implantation rate was significantly better in patients who underwent oxytocin antagonist infusion (19.8%) than in the control group (11.3%) (n = 681; odds ratio [OR], 1.92; 95% confidence interval [CI], 1.25-2.96). No significant difference was found between the two groups in the clinical pregnancy rate (n = 1,020; OR, 1.57; 95% CI, 0.92-2.67) or the miscarriage rate (n = 456; OR, 0.76; 95% CI, 0.44-1.33). Conclusion: The results of this meta-analysis of the currently available literature suggest that the administration of an oxytocin antagonist on the day of ET improves the implantation rate but not the clinical pregnancy rate or miscarriage rate. Additional, large-scale, prospective, randomized studies are necessary to confirm these findings.

Hormonal regulation of uterine chemokines and immune cells

  • Park, Dong-Wook;Yang, Kwang-Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제38권4호
    • /
    • pp.179-185
    • /
    • 2011
  • The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity.