• 제목/요약/키워드: Embedding method

검색결과 701건 처리시간 0.035초

교차참조점에 기반한 정지영상의 워터마크 생성 및 유사성 삽입 기법 (A Technique of Watermark Generation and Similarity Embedding for Still Images Based on Cross Reference Points)

  • 이항찬
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1484-1490
    • /
    • 2007
  • The Cross Reference Point(CRP) is a robust method for finding salient points in watermarking systems because it is based on the geometrical structure of a normalized image in order to avoid pointing error caused by digital attacks. After normalization of an image, the 100 CRPs are calculated. Next, the 100 blocks centered by CRPS are formed. These 100 blocks are arranged using a secrete key. Each boundary of 50 out of 100 blocks is surrounded by 8 blocks which are selected by the ordered number of a preceding block. This number is a seed of random number generator for selecting 8 out of 50 blocks. The search area of a center block is formed by a secrete key. The pixels of a center block are quantized to 10 levels by predefined thresholds. The watermarks are generated by the 50 quantized center blocks. These watermarks are embedded directly in the remaining 50 blocks. In other words, 50 out of 100 blocks are utilized to generate watermarks and the remaining 50 blocks are used to watermark embedding. Because the watermarks are generated in the given images, we can successfully detect watermarks after several digital attacks. The reason is that the blocks for the generation and detection of watermarks are equally affected by digital attacks except for the case of local distortion such as cropping.

통계분석에 강인한 심층 암호 (Secure Steganographic Algorithm against Statistical analyses)

  • 유정재;오승철;이광수;이상진;박일환
    • 정보보호학회논문지
    • /
    • 제14권1호
    • /
    • pp.15-23
    • /
    • 2004
  • 초창기 심층 암호의 대부분은 원본 영상의 최하위비트를 비밀 메시지 비트로 치환하는 방식이었기 때문에 인간의 감각으로는 메시지 삽입 여부를 구별해낼 수 없었지만 통계적 분석에 의하여 원본과 은닉물의 구별은 물론, 비밀 메시지의 삽입 량까지도 거의 추정해낼 수 있을 만큼 취약점을 내포하고 있었다. 우리는 Westfeld 와 Fridrich가 판단의 기준으로 정한 통계량을 각각 분석하였고, 이에 근거하여 원본의 통계량을 유지하면서도 대용량의 메시지를 삽입할 수 있는 방법을 제안하고자 한다. 제안하는 방식은 단순히 원본 영상의 최하위 비트를 변화시켜 메시지를 삽입하는 방식이 아닌 원본의 실제 화소 값이 랜덤 하게 증가하거나 감소하는 방식으로 메시지를 삽입하게 된다.

Opera Clustering: K-means on librettos datasets

  • 정하림;유주헌
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

코드블록 노이즈 분산의 변화를 최소화하는 안전한 JPEG2000 스테가노그라피 (Secure JPEG2000 Steganography by the Minimization of Code-block Noise Variance Changes)

  • 윤상문;이해연;주정춘;;이흥규
    • 정보처리학회논문지C
    • /
    • 제15C권3호
    • /
    • pp.149-156
    • /
    • 2008
  • JPEG2000은 차세대 이미지 압축 포맷으로 JPEG에 비하여 우수한 압축률과 화질을 제공할 수 있다. JPEG2000 이미지를 커버 오브젝트로 사용하는 lazy-mode 스테가노그라피는 압축과정에서 발생하는 정보 손실에 의해 메시지가 손실되지 않도록 제안된 알고리즘으로 많은 양의 메시지 삽입이 가능하다. 그러나 이 방법은 메시지 삽입으로 인하여 코드블럭 노이즈 분산의 변화를 발생하게 되고, 이러한 특징을 기반으로 하는 Hilbert-Huang 변환 (HHT) 기반의 스테거낼리시스에 의하여 메시지 삽입여부가 탐지될 수 있다. 본 논문에서는 코드블럭 노이즈 분산의 변화를 예측하고, 이를 최소화하도록 메시지를 삽입하여 HHT 기반 스태거낼리시스에 의해 탐지되지 않는 새로운 JPEG2000 스테가노그라피 알고리즘을 제시한다. 코드블록 노이즈 분산의 변화를 예측하기 위하여 low precision code-block variance와 low precision code-block noise variance를 활용하였다. 또한 메시지 삽입 후의 높은 영상 화질을 유지하기 위하여 JPEG2000의 quality layer 정보를 활용하였다. 제안한 알고리즘의 성능을 보이기 위하여 2048장의 다양한 영상에 대하여 분석을 수행하였고, 이를 통하여 HHT 기반 스태거낼리시스 방법에 안전함을 증명하였다.

속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구 (Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words))

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.163-170
    • /
    • 2019
  • 과거 10년은 웹의 발달로 인한 데이터가 폭발적으로 생성되었다. 데이터마이닝에서는 대용량의 데이터에서 무의미한 데이터를 구분하고 가치 있는 데이터를 추출하는 단계가 중요한 부분을 차지한다. 본 연구는 감성분석을 위한 재표현 방법과 속성선택 방법을 적용한 오피니언 마이닝 모델을 제안한다. 본 연구에서 사용한 재표현 방법은 백 오즈 워즈(Bag-of-words)와 Word embedding to vector(Word2vec)이다. 속성선택(Feature selection) 방법은 상관관계 기반 속성선택(Correlation based feature selection), 정보획득 속성선택(Information gain)을 사용했다. 본 연구에서 사용한 분류기는 로지스틱 회귀분석(Logistic regression), 인공신경망(Neural network), 나이브 베이지안 네트워크(naive Bayesian network), 랜덤포레스트(Random forest), 랜덤서브스페이스(Random subspace), 스태킹(Stacking)이다. 실증분석 결과, electronics, kitchen 데이터 셋에서는 백 오즈 워즈의 정보획득 속성선택의 로지스틱 회귀분석과 스태킹이 높은 성능을 나타냄을 확인했다. laptop, restaurant 데이터 셋은 Word2vec의 정보획득 속성선택을 적용한 랜덤포레스트가 가장 높은 성능을 나타내는 조합이라는 것을 확인했다. 다음과 같은 결과는 오피니언 마이닝 모델 구축에 있어서 모델의 성능을 향상시킬 수 있음을 나타낸다.

강인성 향상을 위한 벡터 맵 워터마킹 알고리즘의 적용과 평가 (Application and Evaluation of Vector Map Watermarking Algorithm for Robustness Enhancement)

  • 원성민;박수홍
    • Spatial Information Research
    • /
    • 제21권3호
    • /
    • pp.31-43
    • /
    • 2013
  • 벡터 맵 데이터는 다른 멀티미디어에 비하여 높은 가치를 지님에도 불구하고 데이터의 불법복제와 저작권에 대한 인식과 연구는 미비한 실정이다. 본 연구에서는 벡터 맵 데이터의 저장 구조를 고려하여 다양한 공격에 대하여 강인한 워터마킹 기법을 제안하고자 한다. 워터마킹 알고리즘의 설계를 위하여 여섯 가지 접근 방법을 고안하였다(포인트 기반의 접근, 최소 둘레 삼각형 구성, 길이 비율에 대한 워터마크 삽입, 워터마크 이미지의 위치를 참조, 그룹화, 일방함수의 사용). 제안 방법은 입력 효과성, 오검출률, 충실도의 특성을 만족하고 강인성 측면에서 노이즈 첨가를 제외한 모든 공격에서 강인함을 보였다. 또한 제안 방법은 원본 데이터가 필요 없는 Blind 방식이며, 데이터 의존적이지 않은 장점을 갖는다. 추가로 단순화 공격에 대하여 단순화 정도가 심해짐에 따라 강인성이 저하되는 선행 연구의 문제점을 해결할 수 있었다.

Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류 (BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map)

  • 부석준;문세민;조성배
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.256-261
    • /
    • 2018
  • 차량 내부에는 BSR(Buzz, Squeak, Rattle) 세 가지 유형의 소음이 발생한다. 본 논문에서는 심층 컨볼루션 신경망으로 추출한 소음 특징에 기반하여 자동으로 차량 내부의 BSR 소음을 분류하는 분류기를 제안한다. 차량 내부의 소음은 전처리 단계에서 STFT(Short-time Fourier Transform) 알고리즘을 사용하여 소음 맵으로 표현된다. 생성된 소음 맵 내부에서 실제 소음의 위치를 정확하게 파악하기 어려운 문제에 대처하기 위해서 슬라이딩 윈도우 방법으로 분할하였다. 본 논문에서는 t-SNE(t-Stochastic Neighbor Embedding) 알고리즘을 사용하여 심층 컨볼루션 신경망 내부 파라미터를 시각화하고 정성적인 방식으로 오분류데이터를 분석하였다. 분류된 데이터의 정량적인 분석을 위해 소음의 종류별 유사도를 SSIM(Structural Similarity Index) 수치에 기반하여 정량화하여 리트랙터의 떨림음이 정상주행음과 가장 유사하다는 것을 밝혔다. 제안하는 방법의 분류기는 기타 기계학습 알고리즘 대비 최고 분류 정확도를 달성하였다(99.15%).

BRAFV600E Mutation Analysis in Fine Needle Aspiration Biopsy Cytology and Formalin Fixed Paraffin Embedding Block of the Thyroid

  • Han, Kyung Hee;Park, Won Young;Lee, Young Nam
    • 대한임상검사과학회지
    • /
    • 제45권2호
    • /
    • pp.66-72
    • /
    • 2013
  • Fine Needle Aspiration Biopsy Cytology (FNABC), which is known as the most accurate and cost-effective method for diagnosis of the thyroid nodule, may still result in indeterminate cases that are cellular paucity and show minor nuclear atypia. However, most cases are associated with suspicion of papillary thyroid carcinoma (PTC). A B-type Raf kinase (BRAF) mutation was found in about half of PTCs which is currently helping us to differentiate malignancies from benign lesions. Cases studied included 46 histological, confirmed PTC cases. FNABC 102 cell paucity and 74 atypia benign cases were previously diagnosed as suspicious of PTC using cytologic examination. These cases were analyzed for BRAF mutation by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with a new restriction enzyme. In this study, the sensitivity and specificity were calculated and, BRAF mutation was detected by means of a histological method in 23 of 46 cases of PTC and no mutation was found in 22 cases. However, one case was not detected. In using FNABC, BRAF mutation was detected in 6 of 102 cases in cell paucity and in 11 of 74 cases in the atypia. Two cases were not detected in the atypia. The sensitivity and specificity of PCR-RFLP in FNABC were 60% and 97.4% respectively. Assessment of Formalin Fixed Paraffin Embedding (FFPE) block demonstrated similarly a 51.1% positive and 48.9% negative in PTC. Evaluation of BRAF mutation revealed high specificity and low sensitivity in using FNABC method. This study suggests that BRAF mutation analysis should be useful for the clinical diagnosis of PTC in FNABC with cytological findings suspicious for PTC.

  • PDF

Data Hiding Using Sequential Hamming + k with m Overlapped Pixels

  • Kim, Cheonshik;Shin, Dongkyoo;Yang, Ching-Nung;Chen, Yi-Cheng;Wu, Song-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6159-6174
    • /
    • 2019
  • Recently, Kim et al. introduced the Hamming + k with m overlapped pixels data hiding (Hk_mDH) based on matrix encoding. The embedding rate (ER) of this method is 0.54, which is better than Hamming code HC (n, n - k) and HC (n, n - k) +1 DH (H1DH), but not enough. Hamming code data hiding (HDH) is using a covering function COV(1, n = 2k -1, k) and H1DH has a better embedding efficiency, when compared with HDH. The demerit of this method is that they do not exploit their space of pixels enough to increase ER. In this paper, we increase ER using sequential Hk_mDH (SHk_mDH ) through fully exploiting every pixel in a cover image. In SHk_mDH, a collision maybe happens when the position of two pixels within overlapped two blocks is the same. To solve the collision problem, in this paper, we have devised that the number of modification does not exceed 2 bits even if a collision occurs by using OPAP and LSB. Theoretical estimations of the average mean square error (AMSE) for these schemes demonstrate the advantage of our SHk_mDH scheme. Experimental results show that the proposed method is superior to previous schemes.

기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구 (A Study on Patent Literature Classification Using Distributed Representation of Technical Terms)

  • 최윤수;최성필
    • 한국문헌정보학회지
    • /
    • 제53권2호
    • /
    • pp.179-199
    • /
    • 2019
  • 본 연구의 목적은 특허 문헌 분류에 가장 적합한 방법론을 발견하기 위하여 다양한 자질 추출 방법과 기계학습 및 딥러닝 모델을 살펴보고 실험을 통해 최적의 성능을 제공하는 방법론을 분석하는데 있다. 자질 추출 방법으로는 전통적인 BoW 방법과 분산표현 방식인 워드 임베딩 벡터를 비교 실험하고, 문헌 집합 구축 방식으로는 형태소 분석과 멀티그램을 이용하는 방식을 비교 검토하였다. 또한 전통적인 기계학습 모델과 딥러닝 모델을 이용하여 분류 성능을 검증하였다. 실험 결과, 분산표현 방법과 형태소 분석을 이용한 자질추출 방법을 기반으로 딥러닝 모델을 적용하였을 경우에 분류 성능이 가장 우수한 것으로 판명되었으며 섹션, 클래스, 서브클래스 분류 실험에서 전통적인 기계학습 방법에 비해 각각 5.71%, 18.84%, 21.53% 우수한 분류 성능을 보여주었다.