• Title/Summary/Keyword: Embedding Capacity

Search Result 126, Processing Time 0.03 seconds

A High Capacity Reversible Watermarking Using Histogram Shifting (히스토그램 이동을 이용한 고용량 리버서블 워터마킹)

  • Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • Reversible watermarking hides some information in a digital image in such a way that an authorized party could decode the hidden information and also restore the image to its original state. In this paper, a high capacity reversible watermarking method using histogram shifting is proposed. In order to increase embedding capacity, the proposed method divides the image into $2{\times}2$ blocks and uses a paring(horizontal, vertical, diagonal) inside each block, then finds a maximum embedding bin which has the most frequent difference values among the parings. Also, the proposed method removes the overflow and underflow by using location map which including the maximum embedding bin and increases the embedding capacity by embedding iteratively. The experimental results show that the proposed method provides a high embedding capacity and good visual quality compared with the conventional reversible watermarking methods.

Reversible Watermarking with Adaptive Embedding Threshold Matrix

  • Gao, Guangyong;Shi, Yun-Qing;Sun, Xingming;Zhou, Caixue;Cui, Zongmin;Xu, Liya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4603-4624
    • /
    • 2016
  • In this paper, a new reversible watermarking algorithm with adaptive embedding threshold matrix is proposed. Firstly, to avoid the overflow and underflow, two flexible thresholds, TL and TR, are applied to preprocess the image histogram with least histogram shift cost. Secondly, for achieving an optimal or near optimal tradeoff between the embedding capacity and imperceptibility, the embedding threshold matrix, composed of the embedding thresholds of all blocks, is determined adaptively by the combination between the composite chaos and the average energy of Integer Wavelet Transform (IWT) block. As a non-liner system with good randomness, the composite chaos is suitable to search the optimal embedding thresholds. Meanwhile, the average energy of IWT block is calculated to adjust the block embedding capacity, and more data are embedded into those IWT blocks with larger average energy. The experimental results demonstrate that compared with the state-of-the-art reversible watermarking schemes, the proposed scheme has better performance for the tradeoff between the embedding capacity and imperceptibility.

A Generalized Image Interpolation-based Reversible Data Hiding Scheme with High Embedding Capacity and Image Quality

  • Tsai, Yuan-Yu;Chen, Jian-Ting;Kuo, Yin-Chi;Chan, Chi-Shiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3286-3301
    • /
    • 2014
  • Jung and Yoo proposed the first image interpolation-based reversible data hiding algorithm. Although their algorithm achieved superior interpolation results, the embedding capacity was insufficient. Lee and Huang proposed an improved algorithm to enhance the embedding capacity and the interpolation results. However, these algorithms present limitations to magnify the original image to any resolution and pixels in the boundary region of the magnified image are poorly manipulated. Furthermore, the capacity and the image quality can be improved further. This study modifies the pixel mapping scheme and adopts a bilinear interpolation to solve boundary artifacts. The modified reference pixel determination and an optimal pixel adjustment process can effectively enhance the embedding capacity and the image quality. The experimental results show our proposed algorithm achieves a higher embedding capacity under acceptable visual distortions, and can be applied to a magnified image at any resolution. Our proposed technique is feasible in reversible data hiding.

High Performance Lossless Data Embedding Using a Moving Window (움직이는 창을 이용한 고성능 무손실 데이터 삽입 방법)

  • Kang, Ji-Hong;Jin, Honglin;Choe, Yoon-Sik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.801-810
    • /
    • 2011
  • This paper proposes a new lossless data embedding algorithm on spatial domain of digital images. A single key parameter is required to embed and extract data in the algorithm instead of embedding any additional information such as the location map. A $3{\times}3$ window slides over the cover image by one pixel unit, and one bit can be embedded at each position of the window. So, the ideal embedding capacity equals to the number of pixels in an image. For further increase of embedding capacity, new weight parameters for the estimation of embedding target pixels have been used. As a result, significant increase in embedding capacity and better quality of the message-embedded image in high capacity embedding have been achieved. This algorithm is verified with simulations.

New reversible data hiding algorithm based on difference expansion method

  • Kim, Hyoung-Joong;Sachnev, Vasiliy;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.112-119
    • /
    • 2007
  • Reversible data embedding theory has marked a new epoch for data hiding and information security. Being reversible, the original data and the embedded data as well should be completely restored. Difference expansion transform is a remarkable breakthrough in reversible data hiding scheme. The difference expansion method achieves high embedding capacity and keeps the distortion low. This paper shows that the difference expansion method with simplified location map, and new expandability and changeability can achieve more embedding capacity while keeping the distortion almost the same as the original expansion method.

A Robust Reversible Data Hiding Scheme with Large Embedding Capacity and High Visual Quality

  • Munkbaatar, Doyoddorj;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.891-902
    • /
    • 2012
  • Reversible data hiding scheme is a form of steganography in which the secret embedding data can be retrieved from a stego image for the purpose of identification, copyright protection and making a covert channel. The reversible data hiding should satisfy that not only are the distortions due to artifacts against the cover image invisible but also it has large embedding capacity as far as possible. In this paper, we propose a robust reversible data hiding scheme by exploiting the differences between a center pixel and its neighboring pixels in each sub-block of the image to embed secret data into extra space. Moreover, our scheme enhances the embedding capacity and can recover the embedded data from the stego image without causing any perceptible distortions to the cover image. Simulation results show that our proposed scheme has lower visible distortions in the stego image and provides robustness to geometrical image manipulations, such as rotation and cropping operations.

Secure Modulus Data Hiding Scheme

  • Kuo, Wen-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.600-612
    • /
    • 2013
  • In 2006, Zhang and Wang proposed a data hiding scheme based on Exploiting Modification Direction (EMD) to increase data hiding capacity. The major benefit of EMD is providing embedding capacity greater than 1 bit per pixel. Since then, many EMD-type data hiding schemes have been proposed. However, a serious disadvantage common to these approaches is that the embedded data is compromised when the embedding function is disclosed. Our proposed secure data hiding scheme remedies this disclosure shortcoming by employing an additional modulus function. The provided security analysis of our scheme demonstrates that attackers cannot get the secret information from the stegoimage even if the embedding function is made public. Furthermore, our proposed scheme also gives a simple solution to the overflow/underflow problem and maintains high embedding capacity and good stegoimage quality.

Histogram-based Reversible Data Hiding Based on Pixel Differences with Prediction and Sorting

  • Chang, Ya-Fen;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3100-3116
    • /
    • 2012
  • Reversible data hiding enables the embedding of messages in a host image without any loss of host content, which is proposed for image authentication that if the watermarked image is deemed authentic, we can revert it to the exact copy of the original image before the embedding occurred. In this paper, we present an improved histogram-based reversible data hiding scheme based on prediction and sorting. A rhombus prediction is employed to explore the prediction for histogram-based embedding. Sorting the prediction has a good influence on increasing the embedding capacity. Characteristics of the pixel difference are used to achieve large hiding capacity while keeping low distortion. The proposed scheme exploits a two-stage embedding strategy to solve the problem about communicating peak points. We also present a histogram shifting technique to prevent overflow and underflow. Performance comparisons with other existing reversible data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

Reversible Data Hiding Using a Piecewise Autoregressive Predictor Based on Two-stage Embedding

  • Lee, Byeong Yong;Hwang, Hee Joon;Kim, Hyoung Joong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.974-986
    • /
    • 2016
  • Reversible image watermarking, a type of digital data hiding, is capable of recovering the original image and extracting the hidden message with precision. A number of reversible algorithms have been proposed to achieve a high embedding capacity and a low distortion. While numerous algorithms for the achievement of a favorable performance regarding a small embedding capacity exist, the main goal of this paper is the achievement of a more favorable performance regarding a larger embedding capacity and a lower distortion. This paper therefore proposes a reversible data hiding algorithm for which a novel piecewise 2D auto-regression (P2AR) predictor that is based on a rhombus-embedding scheme is used. In addition, a minimum description length (MDL) approach is applied to remove the outlier pixels from a training set so that the effect of a multiple linear regression can be maximized. The experiment results demonstrate that the performance of the proposed method is superior to those of previous methods.

A Study on the Uplift Capacity of Plane and Corrugated Pile Foundations for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝 기초와 주름말뚝 기초의 인발저항력에 대한 실험적 연구)

  • 조재홍;윤용철;윤충섭;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.255-261
    • /
    • 1998
  • The recent greenhouses are extremely light-weight structures and easily damaged by the strong winds due to the lack of uplift capacity of pile foundations. The uplift capacity of pile foundations are subject to the shape of the pile surface, diameter, weight, and embedded depths. etc. So, it is very important to figure out the most appropriate conditions on shape of the pile surface and it's embedding depths. to improve wind proof capability of pipe greenhouses. In this study, plane and corrugated pile surfaces were examined on their uplift capacity with 30 to 50 cm of embedding depths. The diameters of tested piles were 10 cm, 15 cm, and 20 cm, respectively. Compaction ratio of the tested soil was 80%. Each test run was repeated three times for the respective treatment. Obtained results are as follows; In all cases, as the diameter and the embedding depth were increased, the ultimate uplift capacity of the pile was also increased. And it was clear that the ultimate uplift capacity of corrugated pile was approximately two times as big as that of plain piles under same conditions.

  • PDF