• Title/Summary/Keyword: Embedded structure

Search Result 1,173, Processing Time 0.036 seconds

A Durational Study of Vowels Followed by Voiced or Voiceless Consonants (후행하는 유.무성자음에 의한 모음의 지속시간 고찰)

  • Park, Hee-Jung;Shin, Hey-Jung;Yang, Byung-Gon
    • Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.175-185
    • /
    • 2002
  • The purpose of this study was to investigate the acoustic durations of Korean vowels followed by either voiced or voiceless consonants. Six healthy adult speakers (2 females and 4 males) recorded nonsense syllables in which voiced (/b, d, g/) or voiceless (/p', t', k', $p^{h},t^{h},k^{h}$) consonants follow three different vowels (/i, a, u/) embedded in a carrier phrase. Results showed that vowels preceding voiced consonants (e.g., haba) were significantly longer in duration than those preceding voiceless consonants (e.g., hiP' a or $hip^{h}a$). Also vowels were longer in duration when occurring before velar-stops than before bilabial-stop and dental-stops. Finally, the duration of the low vowel (/a/) was substantially longer than that of the high vowels (/i, u/). These findings may be applicable to speech synthesis or therapy.

  • PDF

Pre-processing for the Design of Micro-fluid Flow Sensing Elements

  • Kim Jin-Taek;Pak Bock-Choon;Lee Cheul-Ro;Baek B.J.
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.22-26
    • /
    • 2006
  • A simple finite element analysis is performed to simulate the thermal characteristics of a micro sensor package with thin film heater embedded in the glass wall of a micro-channel. In this paper, Electric characteristics of ITO sputtered heater were presented in this study, which can be used as a map of heater design in the range of available system temperature. The effects of thermo-physical properties of materials, geometrical structure and boundary condition on the thermal performance are also investigated. Finally, the design of micro-flow induced thermal sensor that is capable of measuring fluid flow with a lower flow detection limit of approximately 24pL/s is presented.

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy logic and Piezoelectric Sensors and Actuator (끝단 질량을 가진 복합재료 얇은 벽보의 퍼지이론과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;송오섭;민준식;강호식;정남희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.950-957
    • /
    • 2003
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composit thin-walled beam with a tip mass.

  • PDF

Using Real Options Pricing to Value Public R&D Investment in the Deep Seabed Manganese Nodule Project

  • Choi, Hyo-Yeon;Kwak, Seung-Jun;Yoo, Seung-Hoon
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.2
    • /
    • pp.197-207
    • /
    • 2016
  • This paper seeks to measure the monetary value of technical development in the deep seabed manganese nodule mining by applying the compound option model (COM). The COM is appropriate for the project in terms of its decision-making structure and embedded uncertainty. The estimation results show that the deep seabed mining project has more economic potential than shown by the previously obtained results from the discounted cash flow (DCF) analysis. In addition, it is reasonable to invest in the project taking the various uncertainty factors into consideration, because the ratio of the value to the cost of the project is far higher than one. This information can be utilized in national ocean policy decision-making.

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Immune Algorithm Based Active PID Control for Structure Systems

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1823-1833
    • /
    • 2006
  • An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I-PID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect.

Number of Graphene Layers As a Modulator of the Open-circuit Voltage of Graphene-Based Solar Cell

  • Im, Gyu-Uk;Lee, Gyeong-Jae;Im, Jong-Tae;Gang, Tae-Hui;Jeong, Seok-Min;Hong, Byeong-Hui;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.113-113
    • /
    • 2011
  • Impressive optical properties of graphene have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we show the direct dependence of open-circuit voltage (Voc) on numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces.

  • PDF

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

On FEM modeling of piezoelectric actuators and sensors for thin-walled structures

  • Marinkovic, Dragan;Marinkovic, Zoran
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.411-426
    • /
    • 2012
  • Thin-walled adaptive structures render a large and important group of adaptive structures. Typical material system used for them is a composite laminate that includes piezoelectric material based sensors and actuators. The piezoelectric active elements are in the form of thin patches bonded onto or embedded into the structure. Among different types of patches, the paper considers those polarized in the thickness direction. The finite element method (FEM) imposed itself as an essential technical support for the needs of structural design. This paper gives a brief description of a developed shell type finite element for active/adaptive thin-walled structures and the element is, furthermore, used as a tool to consider the aspect of mesh distortion over the surface of actuators and sensors. The aspect is of significance for simulation of behavior of adaptive structures and implementation of control algorithms.

A Study of Slope Movements Using Fibre Optic Distributed Deformation Sensor (분포형 광섬유센서를 활용한 지표이동 측정에 관한 연구)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • Optical fibre sensors have shown a potential to serve real time health monitoring of Slope and structure. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory on slope and field tests using a novel optical sensor based on Brillouin scattering and PVC pipe. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Slope.

  • PDF