• Title/Summary/Keyword: Embedded structure

Search Result 1,167, Processing Time 0.032 seconds

Improved On-off Property of SiO2 Embedded Polyfluorene Polymer-OLED (SiO2의 첨가를 통한 Polyfluorene계 Polymer-OLED의 발광 동작 개선 가능성)

  • Jeon, Byung Joo;Kim, Hyo Jun;Kim, Jong Su;Jeong, Yong Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2017
  • The effect of weak dielectric silicone dioxide($SiO_2$) embedded in polyfluorene(PFO) emitting layer of polymer-based multi structure OLED was investigated. Indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO)/2,2,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/aluminum(Al) structure OLED was fabricated by spin-coating method. Applied electric field causes some effect on $SiO_2$ in PFO layer. Thus, interaction between polymers and affected $SiO_2$ might generate electrical and luminance properties change. Experimental results, show the reduced threshold voltage of 6 V(from 23 V to 17 V). The maximum current density was rather increased from $71A/m^2$ to $610A/m^2$ and maximum brightness was also increased from $7.19cd/m^2$ to $41.03cd/m^2$, 9 and 6 times each. Additionally we obtained colour broadening result due to the increasing of blue-green band emission. Consequently we observed that electrical and luminance properties are enhanced by adding $SiO_2$ and identified the possibility of controlling the emission colour of OLED device according to colour broadening.

  • PDF

THE EFFECT OF ADHESIVE CURING TIMING ON THE DIRECTION OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (상아질 접착제의 중합 시간 조절에 따른 복합레진의 중합 수축 방향의 변화)

  • 배지현;오명환;김창근;손호현;엄정문;조병훈;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.316-325
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of adhesive curing timing on the direction of polymerization shrinkage of light-curing composite resin. In this study, the curing times of adhesive and composite resin were measured by differential scanning calorimeter(DSC). 28 extracted human molars were embedded in clear resin and box-type cavities were prepared. Based on DSC data, the experimental teeth were divided into 4 groups. Group 1: no bond; Group 2: late curing; Group 3: Intermediate curing; Group 4: Early curing. After treating with adhesive, the buccal cavities were filled with Z-100 hybrid composite resin and the lingual ones were filled with AEliteflo flowable composite resin. The depressions at the surface were measured by surface profilometer, then the specimens were embedded in clear resin and sectioned. Impressions were obtained and used to get epoxy resin replicas. The epoxy replicas were gold-coated and observed under SEM. Average Maximum Gap(AMG), Gap Proportion(GP), Average Marginal Index(AMI) were used to compare the shrinkage gap of each group. The results were statistically analyzed using the Kruskal-Wallis One Way ANOVA, Student-Newman-Keuls method. The results of this study were as follows. 1. Average Maximum Gap, Gap Proportion, Average Marginal Index and depression at the surface or Z-100 hybride composite resin were smaller than those of AEliteflo flowable composite resin(P<0.05). 2. When the bonding between composite resin and tooth structure was strong, the shrinkage gap was small, and depression at the surface was deep(P<0.05). 3. In the well-bonded group, light-curing composite resin shrank toward bonded cavity wall, not toward light source. The result suggested that the direction of polymerization shrinkage was affected by the quality of bonding in the dentin-resin interface. The strong was the bonding between composite resin and tooth structure, the smaller was the gap and the deeper was the depression at the surface. Then the flow to compensate the polymerization shrinkage proceeded from surface to bonded cavity wall.

  • PDF

A Model Test on the Settlements of Adjacent Structures by Excavation (모형실험을 통한 굴착시 인접 구조물의 침하량 평가)

  • 석정우;최광철;김운영;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.17-27
    • /
    • 1999
  • It comes to be an important point to judge precisely the effects of excavation on adjacent ground and structures. It is incorrect to evaluate the ground settlement by excavation without considering the adjacent structure. In this study, laboratory scale tests were carried out by varying the position of structure under the condition of different system stiffness and wall friction to evaluate the behavior of adjacent structures and ground by excavation. When the distance between the structures and the wall was less than 0.3 times of the excavation depth, the ground settlement increased by 181%. No additional effect was observed when the distance was more than 1.0H. As the embedded depth was deeper, the influence zone was smaller, and few additional settlements and angular displacement were observed when the embedded depth was more than 0.75H.

  • PDF

Extension of Code Refactoring Technique to Support Energy Efficiency and Language Conversion of Embedded Software (임베디드 소프트웨어의 에너지 효율성과 언어 변환 지원을 위한 코드 리팩토링 기법 확장)

  • Nam, Seungwoo;Hong, Jang-Eui
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.91-103
    • /
    • 2018
  • Refactoring is an engineering technique for securing the quality of existing legacy code, improving the internal structure without changing the functionality of the software. Along with the reuse of open source software, reuse of source code through programming language conversion is increasingly required due to technical or market requirements. In this situation, the refactoring technique including language conversion as well as energy efficiency is considered to be an important means for improving the productivity and the quality of embedded software development. This paper proposes a code refactoring technique that converts the grammar and structure of a programming language into those of a different language through comparison and mapping, in addition to the existing energy efficient refactoring technique. The use of the proposed refactoring technique can expect to improve the competitiveness of the product through rapid software development and quality improvement by coping with the environment change of the software development language and enhancing the reuse of the existing code.

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

Embedded Fingerprint Verification Algorithm Using Various Local Information (인근 특징 정보를 이용한 임베디드용 지문인식 알고리즘)

  • Park Tea geun;Jung Sun kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.215-222
    • /
    • 2005
  • In this paper, we propose a fingerprint verification algorithm for the embedded system based on the minutia extracted using the image quality, the minutia structure, and the Sequency and the orientation of ridges. After the pre- and the post-processing, the true minutia are selected, thus it shows high reliability in the fingerprint verification. In matching process, we consider the errors caused by shift, rotation, and pressure when acquiring the fingerprint image and reduce the matching time by applying a local matching instead of a full matching to select the reference pair. The proposed algorithm has been designed and verified in Arm920T environment and various techniques for the realtime process have been applied. Time taken from the fingerprint registration through out the matching is 0.541 second that is relevant for the realtime applications. The FRR (False Reject Rate) and FAR (False Accept Rate) show 0.079 and 0.00005 respectively.

A Study on the Estimation of Corrosion Protection Performance of Concrete Containing Ground Granulated Blast-Furnace Slag for Massive Coastal Structures (매시브한 해양구조물 적용을 위한 고로슬래그 혼입 콘크리트의 방청성능 평가에 관한 연구)

  • Yoo, Jae-Kang;Kim, Dong-Suk;Park, Sang-Joon;Won, Chul;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.87-91
    • /
    • 2002
  • This paper investigates the corrosion inhibition and the reduction of hydration heat properties of Ground Granulated Blast-Furnace Slag (GGBFS) added concrete. Since the massive civil structure is vulnerable to the thermal crack by hydration. adiabatic temperature rising tests were performed for water-binder ratios from 43.2% to 47.3%, while replacing 15% to 50% of cement with GGBFS of equal weight. Then, the corrosion protection performance was evaluated using cylindrical specimens embedded with steel reinforcement according to the combination of 3 W/B ratios and 2 levels of chloride ion quantity. The corrosion area of the embedded steel ban was determined using the high pressure steam curing method specified in KS F 2561. The test results showed that the replacement of GGBFS was effective in reducing the hydration heat. The corrosion area of the embedded steel ban decreased as the replacement of GGBFS increased. However, the corrosion area of the steel bar was proportional to the autoclave cycle and the chloride ion quantity. Among the tested specimens, compressive strength, reduction of hydration heat, and corrosion inhibition performance were excellent when 50% of cement was replaced with GGBFS of equal weight.

  • PDF

Implementation of Ubiquitous Robot in a Networked Environment (네트워크 환경에서 유비쿼터스 로봇의 구현)

  • Kim Jong-Hwan;Lee Ju-Jang;Yang Hyun-Seng;Oh Yung-Hwan;Yoo Chang-Dong;Lee Jang-Myung;Lee Min-Cheol;Kim Myung-Seok;Lee Kang-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1051-1061
    • /
    • 2005
  • This paper proposes a ubiquitous robot, Ubibot, as an integration of three forms of robots: Software robot (Sobot), Embedded robot (Embot) and Mobile robot (Mobot). A Sobot is a virtual robot, which has the ability to move to any place or connect to any device through a network in order to overcome spatial limitations. It has the capacity to interpret the context and thus interact with the user. An Embot is embedded within the environment or within physical robots. It can recognize the locations of and authenticate the user or robot, and synthesize sensing information. Also it has the ability to deliver essential information to the user or other components of Ubibot by using various types of output devices. A Mobot provides integrated mobile service. In addition, Middleware intervenes different protocols between Sobot, Embot, and Mobot in order to incorporate them reliably. The services provided by Ubibot will be seamless, calm and context-aware based on the combination of these components. This paper presents the basic concepts and structure of Ubibot. A Sobot, called Rity, is introduced in order to investigate the usability of the proposed concepts. Rity is a 3D synthetic character which exists in the virtual world, has a unique IP address and interacts with human beings through Vision Embot, Sound Embot, Position Embot and Voice Embot. Rity is capable of moving into a Mobot and controlling its mobility. In doing so, Rity can express its behavior in the virtual world, for example, wondering or moving about in the real world. The experimental results demonstrate the feasibility of implementing a Ubibot in a networked environment.

Development of Embedded Lane Detection Image Processing Algorithm for Car Black Box (차량용 블랙박스를 위한 임베디드 차선감지 영상처리 알고리즘 개발)

  • Yi, Soo-Yeong;Ryu, Ji-Hyoung;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2942-2950
    • /
    • 2010
  • Car black box helps to investigate the cause of accident by recording time, position and videos as well as shock information. In addition, the car black box need a function to support safe driving for preventing accident. The representative driving support function is a lane departure warning. In order to implement the function, it is necessary to carry out the image processing to detect the lane first. The image processing algorithm requires computational burden to handle so much data and complicated structure of algorithm. This paper describes the efficient image processing algorithm with relatively low amount of computation for car black box embedded platform to detect lanes from the real-time lane image.