• Title/Summary/Keyword: Embedded structure

Search Result 1,166, Processing Time 0.024 seconds

Analysis of Stripline Structure(Resonator) in LTCC System (LTCC System 에서의 Stripline 구조 특성 연구)

  • 유찬세;이우성;강남기;박종철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.13-17
    • /
    • 2002
  • In ceramic systems, many components including embedded passives and TRL(transmission line) are used for composition of 3-dimensional circuit. So the exact analysis on this components must be performed. As for the TRL's, material properties including electrical conductivity of metal, loss factor and effective dielectric constant of dielectric material and geometrical factors like roughness of surface, vias, dimension of stripline structure have a large effect on the charactersistics of transmission lines. In this research, effect of material and geometrical factors on the characteristics of stripline structure is analyzed and quantified by simulation and measurement.

  • PDF

Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation

  • Kwon, Sun Yong;Yoo, Mintaek;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Korean society experienced successive earthquakes exceeding 5.0 magnitude in the past three years resulting in an increasing concern about earthquake stability of urban infrastructures. This study focuses on the significant aspects of earthquake risk assessment for the cut-and-cover underground railway station based on two-dimensional dynamic numerical analysis. Presented are features from a case study performed for the railway station in Seoul, South Korea. The PLAXIS2D was employed for numerical simulation and input of the earthquake ground motion was chosen from Pohang earthquake records (M5.4). The paper shows key aspects of earthquake risk for soil-structure system varying important parameters including embedded depth, supported ground information, and applied seismicity level, and then draws several meaningful conclusions from the analysis results such as seismic risk assessment.

Study on Query Type and Data Structure for Mobile Meteorological Services

  • Choi, Jin-Oh
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.457-460
    • /
    • 2011
  • For the mobile meteorological services, sensed data should be gathered at a server from various clients like as Ubiquitous Sensor Network, mobile phone or public traffic vehicle by wireless network. The gathered data at server have huge volume and increase continuously. Therefore, a special query method and data structure should be considered. This paper studies on all possible query type on the data and processing steps for the mobile meteorological services. Some query spaces will be discussed. After that, this paper proposes effective data structure for the sensed data to support the query types.

Vibration response of smart concrete plate based on numerical methods

  • Taherifar, Reza;Chinaei, Farhad;Faramoushjan, Shahram Ghaedi;Esfahani, Mohammad Hossein Nasr;Esfahani, Shabnam Nasr;Mahmoudi, Maryam
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.387-392
    • /
    • 2019
  • This research deals with the vibration analysis of embedded smart concrete plate reinforced by zinc oxide (ZnO). The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT). The differential quadrature (DQ) method is applied for calculating frequency of structure. The effects of different parameters such as volume percent of ZnO, boundary conditions and geometrical parameters on the frequency of system are shown. The results are compared with other published works in the literature. Results indicate that the ZnO have an important role in frequency of structure.

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer (저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성)

  • Kim, Yongwoo;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

Lightweight Single Image Super-Resolution by Channel Split Residual Convolution

  • Liu, Buzhong
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2022
  • In recent years, deep convolutional neural networks have made significant progress in the research of single image super-resolution. However, it is difficult to be applied in practical computing terminals or embedded devices due to a large number of parameters and computational effort. To balance these problems, we propose CSRNet, a lightweight neural network based on channel split residual learning structure, to reconstruct highresolution images from low-resolution images. Lightweight refers to designing a neural network with fewer parameters and a simplified structure for lower memory consumption and faster inference speed. At the same time, it is ensured that the performance of recovering high-resolution images is not degraded. In CSRNet, we reduce the parameters and computation by channel split residual learning. Simultaneously, we propose a double-upsampling network structure to improve the performance of the lightweight super-resolution network and make it easy to train. Finally, we propose a new evaluation metric for the lightweight approaches named 100_FPS. Experiments show that our proposed CSRNet not only speeds up the inference of the neural network and reduces memory consumption, but also performs well on single image super-resolution.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.

An Experimental Study on the Settlement Characteristics of the Corner of Earth Retaining Wall According to the Ground Excavation (지반굴착에 따른 흙막이벽 우각부 모서리 구간의 침하특성에 대한 실험 연구)

  • Yoon, Won-Sub;Cho, Chul-Hyun;Cho, Young-Kweon;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.55-66
    • /
    • 2013
  • The experiment of model soil structures has been executed for the soil retaining wall in various conditions of excavation, in this study, to analyze the behavior of the corner of opening. The ground for experiment has been constituted with the sandy soil of relatively loose density, the construction condition has been divided into the opening length of corner, embedded depth, existence of strut, etc., and the excavation has been carried out for 4 stages in total. The behavior characteristics at the corner of opening area has been verified by concentrate analysis of the displacement of wall and the subsidence of ground surface, for each construction and excavation condition, using the measuring instrument mounted inside the model soil structure. In the result of experiment, it has been analyzed that the opening area of corner is unstable structurally compared to the linear area, as it shows that the wall displacement and subsidence of ground surface have been increased when the opening length of corner gets longer. The longer the embedded depth, ground surface settlement of coner was decreased 40%. To apply deeper embedded depth than designed estimate was an advantage in the safety. As a result of the analysis of coner behavior with added struts, maximum surface settlement and maximum horizontal displacement was evaluated 40% and 30%, respectively. Hence increased embedded depth with the added struts in coner edge was effective in the safety.