• Title/Summary/Keyword: Embedded control unit

Search Result 140, Processing Time 0.032 seconds

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

A CMOS active pixel sensor with embedded electronic shutter and A/D converter (전자식 셔터와 A/D 변환기가 내장된 CMOS 능동 픽셀 센서)

  • Yoon, Hyung-June;Park, Jae-Hyoun;Seo, Sang-Ho;Lee, Sung-Ho;Do, Mi-Young;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.272-277
    • /
    • 2005
  • A CMOS active pixel sensor has been designed and fabricated using standard 2-poly and 4-metal $0.35{\mu}m$ CMOS processing technology. The CMOS active pixel sensor has been made up of a unit pixel having a highly sensitive PMOSFET photo-detector and electronic shutters that can control the light exposure time to the PMOSFET photo-detector, correlated-double sampling (CDS) circuits, and an 8-bit two-step flash analog to digital converter (ADC) for digital output. This sensor can obtain a stable photo signal in a wide range of light intensity. It can be realized with a special function of an electronic shutter which controls the light exposure-time in the pixel. Moreover, this sensor had obtained the digital output using an embedded ADC for the system integration. The designed and fabricated image sensor has been implemented as a $128{\times}128$ pixel array. The area of the unit pixel is $7.60{\mu}m{\times}7.85{\mu}m$ and its fill factor is about 35 %.

Design of an Optimal RSA Crypto-processor for Embedded Systems (내장형 시스템을 위한 최적화된 RSA 암호화 프로세서 설계)

  • 허석원;김문경;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.447-457
    • /
    • 2004
  • This paper proposes a RSA crypto-processor for embedded systems. The architecture of the RSA crypto-processor should be used relying on Big Montgomery algorithm, and is supported by configurable bit size. The RSA crypto-processor includes a RSA control signal generator, an optimal Big Montgomery processor(adder, multiplier). We use diverse arithmetic unit (adder, multiplier) algorithm. After we compared the various results, we selected the optimal arithmetic unit which can be connected with ARM core-processor. The RSA crypto-processor was implemented with Verilog HDL with top-down methodology, and it was verified by C language and Cadence Verilog-XL. The verified models were synthesized with a Hynix 0.25${\mu}{\textrm}{m}$, CMOS standard cell library while using Synopsys Design Compiler. The RSA crypto-processor can operate at a clock speed of 51 MHz in this worst case conditions of 2.7V, 10$0^{\circ}C$ and has about 36,639 gates.

Case Study on AUTOSAR Software Functional Safety Mechanism Design: Shift-by-Wire System (AUTOSAR 소프트웨어 기능안전 메커니즘 설계 사례연구: Shift-by-Wire 시스템)

  • Kum, Daehyun;Kwon, Soohyeon;Lee, Jaeseong;Lee, Seonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.267-276
    • /
    • 2021
  • The automotive industry and academic research have been continuously conducting research on standardization such as AUTOSAR (AUTomotive Open System ARchitecture) and ISO26262 to solve problems such as safety and efficiency caused by the complexity of electric/electronic architecture of automotive. AUTOSAR is an automotive standard software platform that has a layered structure independent of MCU (Micro Controller Unit) hardware, and improves product reliability through software modularity and reusability. And, ISO26262, an international standard for automotive functional safety and suggests a method to minimize errors in automotive ECU (Electronic Control Unit)s by defining the development process and results for the entire life cycle of automotive electrical/electronic systems. These design methods are variously applied in representative automotive safety-critical systems. However, since the functional and safety requirements are different according to the characteristics of the safety-critical system, it is essential to research the AUTOSAR functional safety design method specialized for each application domain. In this paper, a software functional safety mechanism design method using AUTOSAR is proposed, and a new failure management framework is proposed to ensure the high reliability of the product. The AUTOSAR functional safety mechanism consists of memory partitioning protection, timing monitoring protection, and end-to-end protection. The fault management framework is composed of several safety SWCs to maintain the minimum function and performance even if a fault occurs during the operation of a safety-critical system. Finally, the proposed method is applied to the Shift-by-Wire system design to prove the validity of the proposed method.

Implementation of Lane Tracking System using a Autonomous RC Toy Car (자율주행이 가능한 무선 장난감 자동차의 차선 추적 시스템 구현)

  • Ko, Eunsang;Lee, Chang Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.249-254
    • /
    • 2013
  • In this paper we propose nonlinear control system for automatic unmanned vehicle using a RC (Radio Controlled) car which is usually controlled by a remote controller. In the proposed system, a RC car is dissembled and reassembled with several parts enabling it to be controlled by an android mobile platform with Bluetooth communication. In our system, an android mobile smartphone is mounted on the RC car and plays an important role as an eye of the car. The proposed system automatically controls the RC car to follow a lane that we draw on the floor of our laboratory. Also, the proposed RC car system can also be controlled manually using the accelerometer sensor of a smartphone through a Bluetooth module. Our proposed system that has both manual mode and automatic mode consists of several components; a microprocessor unit, a Bluetooth serial interface module, a smartphone, a dual motor controller and a RC toy car. We are now in the development of a group driving system in which one car follows the front car that tracks a lane automatically.

Development of NCS-Based Technical Education Program for Analog Signal Processing (아날로그 신호처리를 위한 NCS 기반 기술교육 프로그램 개발)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.510-514
    • /
    • 2020
  • Vocational education needs to be transformed to cultivate talents with diverse fusion competencies, which is in line with the recent changes that have become a part of the complex technological developments in the 4th Industrial Revolution. Therefore, it is very important for college graduates to obtain employment skills as they are required to prepare for careers within the complex environments of future societies. With the transition to the Internet of Things (IoT)-based control in the manufacturing industry, the development of technological education and related training programs is required to cultivate practical talents for students who have acquired not only the information on existing programmable logic controller (PLC)-based technology, but also that on embedded programming technology. Therefore, to develop an NCS-based education program for analog signal processing to ensure that programming can easily be learned for cultivating practical talent, this study summarizes the opinions of field experts, selects the appropriate NCS competency unit, and designs an adequate technology education training program.

Development of Big-data Management Platform Considering Docker Based Real Time Data Connecting and Processing Environments (도커 기반의 실시간 데이터 연계 및 처리 환경을 고려한 빅데이터 관리 플랫폼 개발)

  • Kim, Dong Gil;Park, Yong-Soon;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.153-161
    • /
    • 2021
  • Real-time access is required to handle continuous and unstructured data and should be flexible in management under dynamic state. Platform can be built to allow data collection, storage, and processing from local-server or multi-server. Although the former centralize method is easy to control, it creates an overload problem because it proceeds all the processing in one unit, and the latter distributed method performs parallel processing, so it is fast to respond and can easily scale system capacity, but the design is complex. This paper provides data collection and processing on one platform to derive significant insights from various data held by an enterprise or agency in the latter manner, which is intuitively available on dashboards and utilizes Spark to improve distributed processing performance. All service utilize dockers to distribute and management. The data used in this study was 100% collected from Kafka, showing that when the file size is 4.4 gigabytes, the data processing speed in spark cluster mode is 2 minute 15 seconds, about 3 minutes 19 seconds faster than the local mode.

Driving Control Scheme for High-Load Radar Platform using the Embedded System (임베디드시스템 적용 고부하 레이다 플랫폼 구동 제어)

  • Yushin Chang;Byeol Han;Sungyong Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.505-506
    • /
    • 2023
  • 본 논문은 임베디드시스템을 적용한 대용량 고부하 레이다 플랫폼의 구동 제어 방안을 제안한다. 군사적 방어 목적용 지대공 유도 미사일 시스템의 구성품인 다기능 레이다 시스템은 고중량의 안테나를 구동해야하는 대용량 고부하 레이다 구동 플랫폼이 필수이다. 이 다기능 레이다 시스템은 360도 방위각 전방향을 일정한 속도로 방위각 회전하며 감시정찰 및 방어 임무를 수행한다. 여기서 대부하 레이다 구동 플랫폼은 방위각회전 구동장치를 이용하여 일정한 속도로 360도 방위각 방향으로 안정적인 회전을 가능하도록 구동 제어한다. 본 구동 제어를 실시간으로 구현하기 위해 임베디드시스템인 DSP(Digital Signal Processor)가 포함된 제어모듈은 구동모듈에 회전구동 명령을 인가하여 일정한 회전각속도로 구동하도록 회전구동 모터를 실시간 제어한다. 고부하 레이다 플랫폼은 직구동모터타입의 회전구동모터, 회전체에 신호와 전원을 공급하기 위한 회전슬립링, 회전체의 회전각도를 측정하기 위한 회전센서로 구성된 방위각회전구동장치와 전체 전원을 공급받아 사용 목적에 맞게 변환하여 공급하는 전원모듈, 구동모터에 구동전원을 공급하기 위한 구동모듈, 회전구동 명령에 따라 구동제어하기 위한 제어모듈로 구성된 제어장치로 구분된다. 본 논문에서는 대부하 레이다 구동 플랫폼을 시뮬레이션 모델링으로 구현하고 제안하는 구동 제어 방안은 구동제어시뮬레이션으로 검증한다.

  • PDF

Method of Equipment Control for Implementing Smart Factory based on IoT (스마트 팩토리 구현을 위한 IoT 기반의 장비 제어 방법)

  • Cho, Kyoung-Woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.803-804
    • /
    • 2016
  • With the advent of Germany's Industry 4.0, research of smart factory to applying the ICT in manufacturing industries is in progress. But the current system controlled equipment using the data declared in the embedded systems. In this paper, we proposed equipment control method to implement smart factory based on IoT. This method is create D/B table of data declared in equipment. and equipment shall call all of control unit parameters. When using the present method, it is possible to efficiently control the number of equipment as less network resource. Also It can operating a factory efficiently.

  • PDF

Analysis of Diagnosis Algorithm Implemented in TCU for High-Speed Tracked Vehicles (고속 무한궤도 차량용 변속제어기 진단 알고리즘 분석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.30-38
    • /
    • 2018
  • Electronic control units (ECUs) are currently popular, and have evolved further towards the high-end application of autonomous vehicles in the automotive industry. Such digital technologies have also become widespread, in agriculture and construction equipment. Likewise, transmission control of high-speed tracked vehicles is based on the transmission control unit (TCU), performing complex gear change control functions, and diagnostic algorithms (a TCU's self-diagnostic and reporting capability of malfunction data through CAN communication). Since all functions of TCU are implemented by embedded-software, it is hardly possible to analyze specifications by reverse engineering. In this paper a real-time transmission simulator adaptable to TCU is presented, for analysis of diagnosis algorithm and standards. Signal simulation circuits are deliberately designed considering electrical characteristics of TCU inputs and various analysis tools, such as analog input auto scan function, and global output enable switch, are implemented in software. Test results from hardware-in-the-loop simulator verify tolerance time for each error, as well as cause of fault, error reset conditions.