• Title/Summary/Keyword: Embedded Concrete Rack Track

Search Result 3, Processing Time 0.023 seconds

Shear anchor behavior and design of an embedded concrete rack rail track for mountain trains

  • Hyeoung-Deok Lee;Jong-Keol Song;Tae Sup Yun;Seungjun Kim;Jiho Moon
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.373-384
    • /
    • 2024
  • In this study, a novel mountain train system was developed that can run along a steep gradient of 180 ‰ and sharp curve with a minimum radius of 10 m. For this novel mountain train, an embedded precast concrete rack rail track was implemented to share the track with an automobile road and increase constructability in mountainous regions. The embedded rack rail track is connected to a hydraulically stabilized base (HSB) layer with shear anchors, which must have sufficient longitudinal resistance because they bear most of the traction forces originated from the rack rail and longitudinal loads owing to the steep gradient. In addition, the damage to the shear anchor parts, including the surrounding concrete, must be strictly limited under the service load because the maintenance of shear anchors inside the track is extremely difficult after installation. In this study, the focus was made on the shear anchor behavior and design an embedded rack rail track, considering the serviceability and ultimate limit states. Accordingly, the design loads for mountain trains were established, and the serviceability criteria of the anchor were proposed. Subsequently, the resistance and damage of the shear anchors were evaluated and analyzed based on the results of several finite element analyses. Finally, the design method of the shear anchors for the embedded rack rail track was established and verified.

Technologies for improving the running safety of a tram operating on the concrete embedded track (콘크리트 매립형 궤도를 운행하는 트램의 주행안전성 향상 기술)

  • Seo, Sung-il;Mun, Hyung-Suk;Kim, Sun-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.717-724
    • /
    • 2017
  • To improve the running safety of a tram operating on a concrete embedded track, a bogie, the core system of the tram, was developed and fabricated. After it was integrated with the prototype car body, a short distance track with a sharp curve and steep gradient was constructed for the test operation. A formula to check the interference of the wheel flange with the track during running was proposed. Based on the results provided by the formula, the track was designed. Another simple formula was derived to estimate the derailment quotient and the wheel unloading ratio. During running on the track, the acceleration of the car body was measured and the interface status between the wheel and the track was monitored by a video system. According to the results calculated by these simple formulas, the derailment quotient and wheel unloading ratio were estimated to be within the safety criteria. In the actual test, no derailment occurred and the measured acceleration satisfied the criteria. Also, there was no interference between the wheel and track. The video monitoring results showed no signs of derailment, such as the climbing of the wheel. The pinion in the center showed good running safety, contacting smoothly with the rack. The measurements of environmental noise proved that the criteria were satisfied.

Development of Switching and Heating Devices in Embedded Rack Track for Environmental-friendly Mountain Railway (친환경 산악철도 매립형 궤도의 선로전환기 및 히팅장치 개발)

  • Seo, Sung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.503-510
    • /
    • 2020
  • Eco-friendly mountain railways operate on concrete rack tracks embedded on existing sharp curved and steep roads to preserve the environment in mountainous areas. Owing to the narrow roads, single lines are inevitable, and many branches are required. In branches, previous switchers and heating devices cannot be applied, because of the limited spacing for the rack and the slow removal of thick ice. To solve these problems, a switch and a heating device have been developed. The switcher changes the line by moving the block of concrete track with hydraulic actuators. The lack of discontinuity reduces the derailment risk and makes locking simple. The heating device uses high frequency induction coils to increase the efficiency and melt the thick ice rapidly. The prototype switcher and heating device were produced and operated to prove their performance. The heating device yielded a 10 times greater efficiency than the previous one. The switcher and heating device are the essential core technologies for the operation of mountain trams in winter and contribute to the spread of mountain railways to domestic or foreign resort areas by enhancing safety and efficiency. In addition, they can provide transportation rights to local residents in poor winter traffic, and bring about tourism and local economic growth.