• Title/Summary/Keyword: Elution-curve method

Search Result 43, Processing Time 0.026 seconds

Rapid Determination of Imatinib in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study

  • Yang, Jeong Soo;Cho, Eun Gi;Huh, Wooseong;Ko, Jae-Wook;Jung, Jin Ah;Lee, Soo-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2425-2430
    • /
    • 2013
  • A simple, fast and robust analytical method was developed to determine imatinib in human plasma using liquid chromatography-tandem mass spectrometry with electrospray ionization in the positive ion mode. Imatinib and labeled internal standard were extracted from plasma with a simple protein precipitation. The chromatographic separation was performed using an isocratic elution of mobile phase involving 5.0 mM ammonium formate in water-5.0 mM ammonium formate in methanol (30:70, v/v) over 3.0 min on reversed-stationary phase. The detection was performed using a triple-quadrupole tandem mass spectrometer in multiple-reaction monitoring mode. The developed method was validated with lower limit of quantification of 10 ng/mL. The calibration curve was linear over 10-2000 ng/mL ($R^2$ > 0.99). The method validation parameters met the acceptance criteria. The spiked samples and standard solutions were stable under conditions for storage and handling. The reliable method was successfully applied to real sample analyses and thus a pharmacokinetic study in 27 healthy Korean male volunteers.

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

  • Kim, So-Hee;Yoo, Hye Hyun;Cha, Eun-Ju;Jeong, Eun Sook;Kim, Ho Jun;Kim, Dong Hyun;Lee, Jaeick
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.47-50
    • /
    • 2013
  • An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacokinetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppression was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.

HPLC Analysis of Piroxicam in the Rabbit Plasma and its Bioavailability after the Transdermal Administration of Patches (토끼 혈장 중 피록시캄의 HPLC 분석 및 패취제 투여 후 경피흡수)

  • Shin, Dae-Hwan;Park, Seong-Hyeok;Lee, Gyeong-Bok;Lee, Chong-Kil;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.177-183
    • /
    • 2009
  • A rapid and sensitive reversed-phase high performance liquid chromatography (HPLC) method was developed for the determination of piroxicam in the rabbit plasma. After a treatment of plasma sample by liquid-liquid extraction, the drug was analyzed on an HPLC system with ultraviolet detection at 330 nm. HPLC was carried out using reversed-phase isocratic elution with a C18 column, a mobile phase of a mixture of acetonitril, doubly deionized water and acetic acid 43.74:56.00:0.26 v/v%) at a flow rate of 1.1 mL/min. The chromatograms showed good resolution and sensitivity and no interference of plasma. The calibration curve for the drug in plasma sample was linear over the concentration range of 0.01-2.0 ${\mu}$g/mL. The intra- and inter-day assay accuracies of this method ranged from 86.82% to 108.33% of normal values and the precision did not exceed 13% of relative standard deviation. The plasma concentration of piroxicam decreased to below the quantifiable limit at 12 hr after the i.v. bolus administration to rabbits following dose of 0.375 mg/kg yielding a apparen t plasma half life of 1.38 hr. The transdermal route prolongs plasma levels of piroxicam. The bioavailability, calculated from the dose-adjusted ratio of the $AUC_{transdermal}$ to the $AUC_{i.v.}$, was 7.44%. The plasma concentration of piroxicam was detected by 48 hr after the transdermal administration of patch at a dose of 32 mg/kg. This method was suitable for cutaneous absorption studies of piroxicam in the rabbit after transdermal administration of different types of dosages of the drug.

A Study for Analytical Method of Sudan Colorants in Foods (식품 중 수단색소의 분석법에 관한 연구)

  • 김희연;윤혜정;최장덕;최우정;박선영;이경주;김지혜
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.549-552
    • /
    • 2004
  • A simple, efficient and accurate method was developed for the simultaneous determination of non-permitted oil soluble colorants (sudan I, II, III and IV) in foods. The identification has been carried out for sudan colorants by TLC as well as HPLC with photodiode array (PDA) detection. Separation of sudan colorants was achieved within 20 min by a gradient elution with water and acetonitrile as eluents. Sudan colorants showed good linear relationships in the range of 0.1 ~ 100 $\mu\textrm{g}$/mL. The correlation coefficients of the calibration curve for sudan colorants exceeded 0.999. The detection limits (signal-to-noise ratio 3 : 1) for sudan I, II, III and IV were 0.01, 0.01, 0.02 and 0.02 $\mu\textrm{g}$/mL, respectively. This method has been successfully applied to the analysis of red pepper powder, Kimchi and Kakdugi, and the average recoveries for real samples ranged from 83.02% to 104.3%.

Simultaneous Determination of Isoegomaketone and Perillaketone in Perilla frutescens (L.) Britton Leaves by HPLC-DAD (HPLC-DAD를 이용한 차조기 잎의 Isoegomaketone 및 Perillaketone의 동시분석법 확립)

  • Nam, Bo Mi;Lee, Seung Young;Kim, Jin-Baek;Kang, Si-Yong;Jin, Chang Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.79-83
    • /
    • 2016
  • This study developed an HPLC analysis method for the determination of isoegomaketone (IK) and perillaketone (PK) in Perilla frutescens (L.) Britton leaves. P. frutescens ethanol extract was optimized through an HPLC analysis using a C18 column ($250{\times}4.6mml$, D, $S-5{\mu}m$, 12 nm) with gradient elution of water and acetonitrile as the mobile phase at a flow rate of 1 mL/min and a UV detection wavelength of 254 nm. The results of this method showed linearity in the calibration curve at a coefficient of correlation ($R^2$) of IK 0.9995, PK 0.9998. The limits of detection (LOD) for IK and PK were $0.234{\mu}g/mL$ and $0.952{\mu}g/mL$. The limits of quantification (LOQ) for IK and PK were $0.017{\mu}g/mL$ and $0.043{\mu}g/mL$. The inter-day precision RSDs of IK and PK in the P. frutescens were 1.25 to 2.69% and 0.36 to 1.10%, respectively, and the intra-day precision RSDs of IK and PK were 0.96 to 2.51% and 0.90 to 1.93%, respectively. The accuracies of IK and PK were 96.31 to 97.92% and 101.26 to 105.14%. In conclusion, this method was applied successfully to the detection of IK and PK in P. frutescens.

Determination of methamphetamine and amphetamine enantiomers in human urine by chiral stationary phase liquid chromatography-tandem mass spectrometry

  • Sim, Yeong Eun;Ko, Beom Jun;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.163-172
    • /
    • 2019
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea and its major metabolite is amphetamine (AP). As MA exist as two enantiomers with the different pharmacological properties, it is necessary to determine their respective amounts in a sample. Thus a chiral stationary phase liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of d-MA, l-MA, d-AP, and l-AP in human urine. Urine sample ($200{\mu}L$) was diluted with pure water and purified using solid-phase extraction (SPE) cartridge. A $5-{\mu}L$ aliquot of SPE treated sample solution was injected into LC-MS/MS system. Chiral separation was carried out on the Astec Chirobiotic V2 column with an isocratic elution for each enantiomer. Identification and quantification of enantiomeric MA and AP was performed using multiple reaction monitoring (MRM) detection mode. Linear regression with a $1/x^2$ as the weighting factor was applied to generate a calibration curve. The linear ranges were 25-1000 ng/mL for all compounds. The intra- and inter-day precisions were within 3.6 %, while the intra- and inter-day accuracies ranged from -5.4 % to 11.8 %. The limits of detection were 2.5 ng/mL (d-MA), 3.5 ng/mL (l-MA), 7.5 ng/mL (d-AP), and 7.5 ng/mL (l-AP). Method validation parameters such as selectivity, matrix effect, and stability were evaluated and met acceptance criteria. The applicability of the method was tested by the analysis of genuine forensic urine samples from drug abusers. d-MA is the most common compound found in urine and mainly used by abusers.

Simultaneous Determination of Six Bioactive Components in Guibi-tang by HPLC-DAD (HPLC-DAD를 이용한 귀비탕 중 6종 생리활성 물질의 동시분석법 확립)

  • Yang, Hye-Jin;Weon, Jin-Bae;Ma, Jin-Yeul;Ma, Choong-Je
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • Guibi-tang, a traditional herbal medicine, is used for anti-oxidant, anti-osteoporosis, hemostasis and gastroprotection. To develop an analysis method of simultaneous determination of six compounds, swertisin, decursinol, glycyrrhizin, 6-gingerol, costunolide and decursin in Guibi-tang, a high performance liquid chromatography was used with diode array detector. Six bioactive components were separated on a SHISEIDO $C_{18}$ column ($5\;{\mu}m$, 4.6 mm I.D.${\times}$250 mm) with column temperature $30^{\circ}C$. The gradient elution was composed of water with 0.1% trifluoroacetic acid (TFA) and acetonitrile. UV wavelength was set at 230 nm, 254 nm and 330 nm, respectively. Calibration curve showed good linear regression ($R^2$ > 0.9999). The limits of detection (LOD) and the limits of quantification (LOQ) ranged in 0.03 - 0.23 ${\mu}g/ml$ and 0.08 - $0.70\;{\mu}g/ml$, respectively. The RSD values of intra- and inter-day test were in the range of 0.03 ~ 0.96% and 0.01 ~ 1.46%, respectively. The evaluated results of accuracy test were varied from 92.28% ~ 105.14% with RSD < 1.60%. In conclusion, this developed simultaneous determination method was accuracy and sensitive to the quality evaluation of Guibi-tang.

Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon (흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구)

  • Son, Hae-Jeong;Lim, Young-Il;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1087-1094
    • /
    • 2008
  • This article presents a multi-scale simulation approach starting from the molecular level for the adsorption process development, specifically, in n-hexane adsorption on activated carbon. A grand canonical Monte-Carlo(GCMC) method is used for the prediction of adsorption isotherms of n-hexane on activated carbon at the molecular level. Geometric effects and hydrodynamic properties of the adsorption column are examined by means of the two dimensional CFD(computational fluid dynamics) simulation. The adsorption isotherms from the molecular simulation and the axial diffusivity from the CFD simulation are exploited for the process simulation where the elution curve of n-hexane is obtained. For the first moment(mean residence time) of the pulse-response with respect to temperature and flowrate, the process simulation results obtained from this three-steps multiscale simulation approach show a good agreement with experimental data within 20% of maximum difference. The multi-scale simulation approach addressed in this study will be useful to accelerate the adsorption process development, while reducing the number of experiments required.

Simultaneous Analysis of Cold Medicine Component by High-Performance Liquid Chromatography(HPLC) (고성능 액체크로마토그래피(HPLC)를 이용한 Cold Medicine 성분의 동시 분석)

  • Wonju Lee;Seung-Tae Choi;Keun-Sik Shin;Jin-Young Park;Jae-Ho Sim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.867-873
    • /
    • 2023
  • In this study, for the purpose of standardized quality control of a cold medicine, we simultaneous analyzed four main chemical components of a cold medicine: acetaminophen, caffeine, methyl paraben, and propyl paraben. The sample was subjected to quantitative analysis using high performance liquid chromatography (HPLC), after pretreatment of four components. The experiment was carried out by using Isocratic elution at wavelength of 270nm. Acetonitrile and water (H2O) were used as a mobile phase at a flow rate of 1.0mL/min in a commercial C18 reversed-phase column. A volume of 10uL cold medicine were injected into the column with column oven temperature at 35℃. As a result of the experiment, the values of Resolution were 4.983, 1.596, 5.519, and 1.678 respectively-well over Rs >1.5, which indicates that the separation of four components were efficient. In addition, value of symmetry factor of the components was 1.056, 1.069, 1.032, and 1.133 respectively, to show its symmetrical stability. The calibration curve of all four components exhibits good linearity with R2 >0.9995 to 0.9999. Furthermore, the limit of detection(LOD) were between 0.0118 to 1.5973 mg/mL, while the limit of quantification (LOQ) were between 0.0353 to 4.7919 ㎍/mL with the recovery rate of 79.6% ~ 120.5%. The results of this study showed an efficient quality evaluation of a simultaneous analysis method for cold medicine components.

Quantitation of fructo- and inulo-oligosaccharides by high performance liquid chromatography (High performance liquid chromatography에 의한 fructo 및 inulo올리고당의 정량)

  • Kang, Su-Il;Han, Jong-In;Kim, Kyoung-Youn;Oh, Sun-Jin;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.310-314
    • /
    • 1993
  • High performance liquid chromatographic method using a TSK-gel amide 80 column and isocratic elution with acetonitrile-water (63 :35 ;v/v) mixture was used for the separation and the quantitation of fructo (GF2-GF7)- and inulo-oligosaccharides (F2-F4). Retention time of each standard carbohydrate was highly reproducible. Standardization curves obtained by plotting the peak areas against the amounts of each carbohydrate showed very high coefficient of determination$({\ge}0.9884)$ and similar slopes, and a wide range of y-intercepts. Our results suggest the use of each Pure oligosaccharide for its own standardization curve instead of using a certain carbohydrate as an internal standard.

  • PDF