• Title/Summary/Keyword: Elongation ratio

Search Result 391, Processing Time 0.029 seconds

Studies on the Physical Properties and Application of EPDM-Polymer Blends. Part 6. Physical Properties for EPDM-NR-SBR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究)(제6보(第6報)) EPDM과 Natural Rubber 및 Butadiene-Styrene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.7 no.2
    • /
    • pp.183-192
    • /
    • 1972
  • As a series of tile studies of EPDM-Polymer blends, tile experiment are concentrated to the investigation of the physical properties of tile EPDM-NR-SBR blends. The results are shown as follows: 1. In blending, tensile strength decreased with increase in EPDM contents, especially the ratio of EPDM/NR-SBR is 75/25. 2. Elongation and tear strength were much influenced by blending, especially the ratio of EPDM/NR-SBR is 50/50. 3. Ozone resistance is much improved after blending. It was effective more than tile ratio of EPDM/NR-SBR is 25/75. 4. Aging resistance is much improved after blending. It was effective more than the ratio of EPDM/NR-SBR is 50/50. 5. Hardness increased with increase in EPDM contents and on the other hand, abrasion resistance decreased.

  • PDF

The Analysis of Relationships between Road Alignment and Terrain Conditions for National Forest Road (국유림도(國有林道)의 노선선형(路線線形)과 지형(地形)과의 관계분석(關係分析))

  • Cha, Du Song;Cho, Koo Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.517-524
    • /
    • 1995
  • This study was conducted to investigate the characteristics of the road alignment, correlations among evaluation factors of the alingment, and the relationships between the evaluation factors and terrain factors for the forest road of five National Forest Offices. The results were as follows : 1. The elongation coefficients(${\eta}$) of forest road in Kangnung and Wonju National Forest Office were ranged 0.3~0.5, and those of Andong, Namwon, and Kongju National Forest Offices were ranged 0.2~0.3 in straight line of 100m, 200m, and 300m. 2. Three different types of plane alignment were identified for Kangnung and Wonju National Forest Offices, Namwon and Kongju National Forest Offices, Andong National Forest Office. However, longitudinal alignment for five National Forest Offices tended to be similar conditions. 3. Low correlation coefficients were calculated in the relation between elongation coefficients(${\eta}$) and evaluation factors of plane alignment(curve length ratio(%), sum of inverse number of each curve radius(m/km), and sum of each intersection angle($^{\circ}/km$)) for three straight lines. On the contrary, high correlation coefficients were obtained among the relations of curve length ratio(%), sum of inverse number of each curve radius(m/km), and sum of each intersection angle($^{\circ}/km$). 4. Slope(%) were closely correlated with plane alignment, and so were the relationships between frequency of valleys and streams(No./km) and elongation coefficients(${\eta}$) of forest road.

  • PDF

A Study On the Structure and Mechanical Properties of PP filament at Different Spinning speed and Draw ratio (방사속도 및 연신비 변화에 따른 Polypropylene filament의 구조와 물성에 관한 연구)

  • Lee, Eun-Woo;Cho, Kyu-Min;Cho, In-Sul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Effects of spinning speed and draw ratio on structure and mechanical properties of PP filament. A The crystalline structure and mechanical properties of uniaxially deformed polypropylene filament has been examined by XRD, birefringence, UTM and density method. Uniaxially deformed PP filament was prepared of various spinning speeds (300, 600, 900m/min.) and draw ratio(x2, x3, x4). From the results of these studies, it found the following facts. Firstly, it was found that the crystallinity and crystallite size (110plane) of the samples were increased with increasing of spinning speed and draw ratio, especially, it was rapidly increased between as spun yarn and 2 times draw ratio. Secondly, birefringence value was increased with increasing of spinning speed and draw ratio. The mechanical properties of initial modulus, tensile strength were increased with increasing of spinning speed and draw ratio also, but the degree of elongation decreased as spinning speed and draw ratio.

  • PDF

Particle Shape Evaluation of Aggregate using Digital Image Process (디지털 이미지 처리 기법을 이용한 골재입자의 형상 분류)

  • Hwang, Taik-Jean;Cho, Jae-Yoon;Lee, Kwan-Ho;Song, Young-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.53-59
    • /
    • 2009
  • The purpose of this research is particle shape evaluation of granular soil and aggregate using Digital Image Process(DIP). DIP is very useful to measure the roughness and particle shape of aggregates. Couple of aggregates, like standard sand, two different crushed stones, and two different marine aggregates, have been employed. Shape factor of two different marine aggregates is ranged 0.35 to 0.54. Crushed stone I is that of 0.74 which is highly flat, but standard sand is elongated shape. Especially, two marine aggregate showed a big difference of width and length which meaned a long shape. There is any significant difference of elongation ratio and flakiness for each aggregate with different measuring system, like direct measurement of vernier calipers and DIP method. Within the limited test results, DIP is one of useful to get the particle shape of aggregate with limitation of measuring errors and to apply the particle distribution curve.

Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature (저온환경에서 NR/BR 블렌드 조성비 및 오일함량이 방진고무재료의 기계적 특성에 미치는 영향)

  • Kim, Wan-Doo;Kim, Wan-Soo;Woo, Chang-Soo;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • New compounds were made using various NR/BR blend ratio and oil content to improve mechanical properties of rubber isolator at low temperature. Mechanical properties were investigated as a function of NR/BR blend ratio and oil content. Hardness and tensile modulus generally increased, but tensile strength and elongation at break decreased with increasing BR content. Hardness, tensile modulus and tensile strength decreased, but elongation at break were nearly the same with increasing oil content. The glass transition temperature of NR and BR were found to be $-50^{\circ}C$ and $-90^{\circ}C$ respectively based on the abrupt drops in storage elastic modulus and peak of loss factor. Two distinct transition temperature were observed in NR/BR blend compounds and each transition point was not affected by blend level indicating incompatible nature of NR/BR blend.

A Study on the Characteristics of Chrysotile and Amosite by Acid and Heat Treatment (산 및 열처리 과정에 따른 주요 석면의 특성변화에 관한 연구)

  • Lee, Jin Hyo;Lee, Su Hyun;Kang, Mi Hye;Bae, Il Sang;Kim, Ik Soo;Han, Kyu Mun;Eo, Soo Mi;Jung, Kweon;Koo, Ja Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.371-379
    • /
    • 2015
  • This study is purposed to seek the characteristics of both asbestos in accordance with acid and heat treatment for chrysotile and amosite used mainly as building materials. Results of acid treatment, the refractive index, the elongation sign, the extinction of acid-treated chrysotile were mostly similar to those of untreated chrysotile regardless of pH, elapsed time. But the characteristics of acid-treated chrysotile were different from those of untreated chrysotile after 8 weeks, at pH 1.2 acidic solution. When chrysotile treated with acid, weight ratio (%) of O and Mg fluctuated greatly in accordance with acid treatment unlike Si. But the change of constituents ratio (%) was small as time passed after acid treatment. The refractive index, the elongation sign and the extinction of acid-treated amosite were mostly similar to those of untreated amosite regardless of pH, elapsed time. When amosite was treated with acid, weight ratio (%) of Fe slightly increased. But in case of O, a contrary tendency was seen. Results of heat treatment, the higher the temperature, the more increased the refractive index of chrysotile. When chrysotile was heated for 10 minutes at $1,100^{\circ}C$, the elongation sign of chrysotile changed from positive(+) to negative(-). The extinction of chrysotile didn't change apparently in accordance with heat treatment. Also weight ratio (%) of O and Mg fluctuated greatly in accordance with heat treatment unlike Si. The higher the temperature, the more increased the refractive index of amosite. The elongation sign and the extinction of amosite didn't change apparently in accordance with heat treatment. Also weight ratio (%) of O and Fe fluctuated greatly in accordance with heat treatment. But weight ratio (%) of Si and Mg of heated amosite were mostly similar to those of untreated amosite regardless of temperature, heating time.

Hardening State and Basic Properties Changes According to the Mixture Ratio of MMA Resin Used as a Waterproofing Coating Material in Concrete Bridges (콘크리트 교면용 도막방수재로 사용되는 MMA 수지의 배합비율에 따른 경화상태 및 기본 물성에 관한 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.224-234
    • /
    • 2019
  • Waterproof layers are installed in civil engineering structures and bridge construction is commonly finished by applying a layer of regular or asphalt concrete above the waterproof layer. However, asphalt materials are susceptible to melting at high temperature due to its superior temperature sensitivity, and this causes the waterproofing material to melt due to the high temperature of the asphalt concrete, thereby increasing the defect occurrence rate due to the thickness reduction. In this study, tensile strength and elongation of hard and soft type of MMA(Methyl Methacrylate) applied to bridges were compared in accordance to standard performance criteria based on different mixture ratios. Results of comparative testing showed that hard MMA resin can display a satisfactory tensile strength, and soft MMA resin displays satisfactory elongation properties, but as the two resin types are separately used, neither types are able to satisfy the standard requirements outlined in KS F 4932. When the amount of the powder exceeds 56.25% of the total amount, voids are generated on the surface after curing and self leveling was impossible and a heterogeneous surface is formed. Furthermore, when the hard resin: soft resin: powder mixture ratio was set to 15g: 85g: 150g. the tensile strength was $1.5N/mm^2$ and the elongation percentage was 133% which satisfy the tensile performance of KS F 4932.

Basic Properties of Polymer Cement Composites with Polymer Dispersions and Cement for Crack Repair (폴리머 디스퍼전과 시멘트로 만든 균열보수용 폴리머 시멘트 복합체의 기초적 성질)

  • Young-Kug Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.97-104
    • /
    • 2023
  • The aim of this study was to produce polymer cement composites (PCCs) composed of polymer dispersion and cement as crack repair materials for RC structures, and to investigate their fundamental properties. The test mixtures for the study were based on EVA and SAE polymer dispersions, and the water-cement ratio was determined while varying the polymer-cement ratio(P/C) in four different levels (20%, 60%, 80%, and 100%) to achieve the desired viscosity of PCCs considering their fillability as crack repair materials. Additionally, silica fume was incorporated into P/C 80% and 100% specimens to enhance their stiffness. The basic properties of PCCs as crack repair materials, such as viscosity, flowability, fillability, tensile strength, elongation, and modulus of elasticity, were examined. The results showed that P/C depending on the type of polymer significantly affected the viscosity and flowability, and appropriate w/c ratios were needed to achieve the desired viscosity for the mixture design with consideration of fillability as crack repair materials for RC structures. All designed mixtures in this study exhibited excellent fillability. The tensile strength and elongation of PCCs satisfied the KS regulation for cement- polymer modified waterproofing coatings. The incorporation of silica fume improved the tensile strength and modulus of elasticity of PCCs. Depending on the type of polymer, mixtures using SAE showed better fundamental properties as crack repair materials for RC structures compared to those using EVA. In conclusion, SAE-based P/C 80% or 100% with the addition of up to 30% silica fume can be recommended as suitable mixtures for crack repair of RC structures.

Properties of Wool/Spandex Core-Spun Yarn Produced on Modified Woolen Spinning Frame

  • Dang, Min;Zhang, Zhilong;Wang, Shanyuan
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.420-423
    • /
    • 2006
  • Spandex has been successfully applied on modified worsted spinning system to produce spandex core spun yam. However it's difficult to produce wool/spandex core-spun yam on woolen spinning system with the same modified device because the drafting device of the two systems is quite different. A new method is introduced to apply spandex on woolen spinning system in this paper. Core-spun yam produced in this way has good appearance and quality by comparing with normal yam. A series of experiments were carried out to study the influence of spandex drafting ratio and yam twist factor on tensile' properties and elasticity of core-spun yams. The results indicate that core-spun yam with spandex drawing ratio of 2.5 and twist factor of 13.63 has highest value of tenacity and breaking elongation.

Effects of Chaff as Bulking Materials on Aerobic Composting of Food Wastes

  • Park, Seok-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.208-212
    • /
    • 2003
  • This study was performed to examine the effects of chaff as bulking materials on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor Control, Ch-1, Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wastes to chaff resulted in the ascending of the highest reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff resulted in the more fast time of pH ascending. The lowering of the volume ratio of food wastes to chaff resulted in the more fast consistency in the weight and volume reduction rates. Salinities were condensed by reaction days. The final salinity of Control was 2.79%, and the final range of salinities of chaff mixtures was 2.18 - 2.37%.

  • PDF