• 제목/요약/키워드: Elongation Structure

검색결과 327건 처리시간 0.022초

Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

  • Lu, Shulin;Yang, Xiong;Hao, Liangyan;Wu, Shusen;Fang, Xiaogang;Wang, Jing
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1315-1326
    • /
    • 2018
  • In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheosqueeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and ${\alpha}-Mg$ matrix in $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to $4.3{\mu}m$. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine ${\alpha}-Mg$ matrix (${\alpha}1-Mg$ and ${\alpha}2-Mg$ grains) and LPSO structure.

분말야금법으로 제조한 하모닉 구조재료의 신장플랜지 가공성 (Stretch-Flangeability of Harmonic Structure Material Manufactured by Powder Metallurgy Method)

  • 윤재익;이학현;박형근;;김형섭
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.128-132
    • /
    • 2017
  • Harmonic structure materials are materials with a core-shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretch-flangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

산화열화과정 중 가교폴리에틸렌 파이프의 분자구조 및 인장 특성 변화 (Molecular Structure and Tensile Properties Change of Crosslinked Polyethylene Pipes during Oxidative Degradation Process)

  • 박성규;김대수
    • 폴리머
    • /
    • 제33권6호
    • /
    • pp.520-524
    • /
    • 2009
  • 가교 폴리에틸렌 파이프의 산화 열화가 진행되는 동안 인장 특성의 변화 및 화학적 구조의 변화를 조사하여 산화 열화가 파이프의 성능에 미치는 영향을 분석하였다. 가교 폴리에틸렌 파이프의 산화 열화를 유도하기 위하여 고온 열처리 및 UV 조사 방법을 이용하였으며 파이프 생산 시 다이 온도가 파이프의 산화 열화에 미치는 영향도 조사하였다. 산화 열화 과정 중 파이프의 인장 특성 변화는 만능재료시험기로, 화학적 구조의 변화는 적외선분광기로 각각 조사하였다. 열에 의한 산화 열화가 진행됨에 따라 파이프의 인장 강도는 서서히 감소하였으나 파단 신율은 급격히 감소하였고, 파이프 내부로 도입된 산소 분자로 인해 화학적 구조도 변화하였다. 이러한 결과는 가교 폴리에틸렌 파이프의 생산 및 저장 중 산화 열화에 따른 성능 저하를 평가하는데 유용하게 사용될 것이다.

Fe-Si-Mn-P강판의 초기조직변화가 잔류오스테나이트 형성 및 인장성질에 미치는 영향 (Effect of Initial Structure on the Retained Austenite and Tensile Properties of Fe-Si-Mn-P Steel Sheet)

  • 문원진;강창용;김한군;김기돈;성장현
    • 열처리공학회지
    • /
    • 제10권1호
    • /
    • pp.10-19
    • /
    • 1997
  • This study has been conducted to investigate the effects of initial structure on the microstructure and tensile properties of high strength trip steel sheet. The initial structure before austempering remarkably influenced the second phase. The specimen with normalized initial structure showed mainly bainitic ferrite and retained austenite, while the as rolled specimen and spherodized specimen showed martensite plus retained austenite and martensite plus bainitic ferrite with small retained austenite, respectively. Two type of retained austenite, film type and granual type were observed in all specimens. The as rolled specimen appeared the highest contents of retained austenite owing to the compressive stress by cold rolling. The contents of retained austenite increased with increasing intercritical annealing temperature and austempering time. Tensile strength showed the highest in the as rolled specimen, while the highest elongation were obtained in the normalized specimen. The maximum T.S.${\times}$El. Value showed in normalized initial structure and increased with increasing intercritical annealing and austempering time. The highest Value of T.S.${\times}$El. obtained at austempering temperature of $400^{\circ}C$ and retained austenite of 12%.

  • PDF

Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성 (Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn)

  • 이재원;이백희;이규환;김영도
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

전자기 듀오캐스팅으로 제조한 Al-Mn/Al-Si 하이브리드 알루미늄합금의 미세조직과 인장 특성 (Microstructure and Tensile Properties of Al-Mn/Al-Si Hybrid Aluminum Alloy Prepared by Electromagnetic Duo-Casting)

  • 박성진;;김종호;박준표;장시영
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.97-102
    • /
    • 2012
  • The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.

용제처리에 의한 합성섬유의 구조와 물성에 관한 연구(V) -Formic Acid 처리에 의한 Nylon 6 Filament 직물의 수축거동 및 성질변화- (Study on the Structure and the Physical Properties of Synthetic Fibers Treated with Organic Solvents (V) -The Shrinkage Behavior and Property Change of Woven Fabric Composed of Nylon 6 Filaments by Formic Acid Treatment-)

  • Lee, Yang-Hun;Park, Suk-Chul
    • 한국염색가공학회지
    • /
    • 제1권1호
    • /
    • pp.54-62
    • /
    • 1989
  • The woven fabric composed of nylon 6 filaments was treated with aqueous solutions (20, 30, 40, 50, 60%) of formic acid at 3$0^{\circ}C$ for 10 minutes under unrestrained condition, and the shrinkage behavior and some kinds of properties were examined. The shrinkages of the constituent yarns and fabric were increased with formic acid concentration, but they were lower than that of the original filaments because of fabric-structural factors. And the shrinkage of the warp was lower than that of the weft because of the residual stress from weaving process. By the restraint forces such as fabric-structural factors and residual stress, the constituent filaments were damaged partially at 60% of formic acid concentration and the degree of damage on the warp was greater than on the weft. And though the fabric count were increased overall, the spacing between the warps was decreased prior to the weft and eliminated nearly at 60% of formic acid concentration. The thickness, tensile strength, elongation, and handle value of fabric were increased overall with formic acid concentration excepting that the tensile strength for both the warp and weft directions and the elongation for the warp direction were decreased instead by the damage of yarns. But the crease recovery was decreased except the case of the weft direction at 60% of formic acid concentration.

  • PDF

강남콩에 대한 $SO_2$ 피해경감제로서 uniconazole의 효과에 관한 연구 (Efficacy of Uniconazole as a Phytoprotectant Against $SO_2$ Injury in Snap Bean)

  • 구자형
    • 한국대기환경학회지
    • /
    • 제8권1호
    • /
    • pp.13-19
    • /
    • 1992
  • This study was conducted to determine the efficacy of using uniconazole,[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazole-1-yl)-1-penten-3-ol)] as a phytoprotectant against $SO_2$ injury in snap been (Phaseolus vulgaris L. 'Strike'). Thirteen days prior to $SO_2$ fumigation, plants were given a 100 ml soil drench of uniconazole solution at concentrations of 0.02, 0.10, 0.25 and 0.50 mg/pot. All four uniconazole concentrations were significantly effective in providing protection against $SO_2$ exposure(3 h at 1.5 ppm), but uniconazole treatment above 0.02 mg/pot severely reduced stem elongation, leaf enlargement, flowering date and pod number and weight. Uniconazole treatment had little or no effect on stomatal conductance but reduced transpiration rate on a whole plant basis by nearly 40%. This may reflect an alteration in canopy structure by reducing stem elongation and leaf enlargement. Although uniconazole did not increase the activities of superoxide dismutase(SOD) and peroxidase(POD) in non-$SO_2$-fumigated plants, it significantly increased those enzyme activities in $SO_2$-fumigated plants. Chlorophyll concentration on the basis of unit area was increased 50-60% by uniconazole. However, the difference was not detected on the basis of dry weight. $SO_2$ increased variable chlorophyll fluorescence (Fv) 48% after 1.5 h of exposure in non-uniconazole treated plants but decreased Fv in the plants after 3 h of exposure. By appliing uniconazole, it was possible to maintain high Fv values in the latter group of plants. These results suggest that the phytoprotective effects of uniconazole are related to its growth-retarding properties as an anti-gibberellin as well as the increase of activites of free radical scavengers such as SOD and POD.

  • PDF

Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

  • Kokolis, John;Chakmakchi, Makdad;Theocharopoulos, Antonios;Prombonas, Anthony;Zinelis, Spiros
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSE. The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS. Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a $45^{\circ}$ bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (${\varepsilon}$) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (${\alpha}$=.05) and Weibull analysis where Weibull modulus m and characteristic strength ${\sigma}_0$ were identified. Fractured surfaces were imaged by a SEM. RESULTS. SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ${\varepsilon}$, m and ${\sigma}_0$) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION. The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability.